-
Spark- 计算每个学科最受欢迎的老师
日志类型 测试数据 http://bigdata.myit.com/zhangsan http://bigdata.myit.com/zhangsan http://bigdata.myit.com/zhangsan http://bigdata.myit.com/zhangsan http://bigdata.myit.com/zhangsan http://java.myit.c…- 0
- 0
- 95
-
Spark- 使用第三方依赖解析IP地址
使用 github上已有的开源项目 1)git clone https://github.com/wzhe06/ipdatabase.git 2)编译下载的项目: mvn clean package- DskipTests 3)安装jar包到自己的 maven仓库 mvn install: install-file -Dfile=${编译的jar包路径}/target/ipdatab…- 0
- 0
- 115
-
Hadoop- 分布式资源管理YARN架构讲解
YARN是分布式资源管理,每一台机器都要去管理该台计算机的资源,Yarn负责为MapReduce程序分配运算硬件资源。每一台机器的管理者叫 NodeManager,整个集群的管理者管理着整个集群的NodeManager,叫 ResourceManager。资源调度和资源隔离是YARN作为一个资源管理系统最重要和最基础的两个功能。资源调度由 ResourceManager 完成,而资源…- 0
- 0
- 92
-
CDH- cdh kafka已经卸载了,但是服务器还有kafka-topics这些命令可用,导致重新安装kafka出现问题
CDH- cdh kafka已经卸载了,但是服务器还有kafka-topics这些命令可用,导致重新安装kafka出现问题 cdh界面删除并不会将 kafka数据删除,需要将kafka集群节点 var/local/kafka/data 清理掉 然后将zk brokers/topics 下的topic也清理掉- 0
- 0
- 56
-
Spark- RDD简介
Spark里面提供了一个比较重要的抽象——弹性分布式数据集(resilient distributed dataset),简称RDD。弹性:数据可大可小,可分布在内存或磁盘,当某台机器宕机时,能够按照RDD的liveage重新计算,从而恢复。 RDD有5个特性: 1.一个分区列表,用于并行计算,每个分区对应一个原子数据集,作为这个分区的数据输入 2.计算这个RDD某个分区数据(这个分…- 0
- 0
- 75
-
PyMiner-py2cn 数据分析工具:开源界的MATLAB
PyMiner 是一款数据处理、分析、建模、评估软件,目的是使 pandas\sklearn 的操作进行可视化。项目开发环境基于Window 10 X64,使用 Python3.8+PyQt5.15+Pycharm 进行技术开发。同时,此项目支持跨平台,这意味着即使是Linux、Mac也可以使用或开发此软件。 安装 下载项目源码 安装python并打开命令行工具,使用 pip install -r…- 0
- 0
- 72
-
Hadoop- Hadoop环境搭建
Windows下Hadoop的安装 准备工具:64位的JDK,Hadoop安装包(我使用的是2.6.1) JDK下载地址 官网: http://www.oracle.com/technetwork/java/javase/downloads/index.html Hadoop下载地址 官网:http://hadoop.apache.org/ 1.安装JDK环境,配置系统环境变量. 选…- 0
- 0
- 74
-
Spark- 优化后的 shuffle 操作原理剖析
在spark新版本中,引入了 consolidation 机制,也就是说提出了ShuffleGroup的概念。一个 ShuffleMapTask 将数据写入 ResultTask 数量的本地文本,这个不会变。但是,当下一个 ShuffleMapTask 运行的时候,可以直接将数据写入之前的 ShuffleMapTask 的本地文件。相当于是,对多个 ShuffleMapTask 输出…- 0
- 0
- 52
-
Spark- Linux下安装Spark
Spark- Linux下安装Spark 前期部署 1.JDK安装,配置PATH 可以参考之前配置hadoop等配置 2.下载spark-1.6.1-bin-hadoop2.6.tgz,并上传到服务器解压 [root@srv01 ~]# tar -xvzf spark-1.6.1-hadoop2.6.tgz /usr/spark-1.6.1-hadoop2.6 3.在 /usr 下…- 0
- 0
- 84
-
Hadoop- NameNode和Secondary NameNode元数据管理机制
元数据的存储机制A、内存中有一份完整的元数据(内存meta data)B、磁盘有一个“准完整”的元数据镜像(fsimage)文件(在namenode的工作目录中)C、用于衔接内存metadata和持久化元数据镜像fsimage之间的操作日志(edits文件)NameNode和Secondary NameNode元数据管理机制客户端每次对文件的操作,如果涉及到元数据的更新(读除外),比如…- 0
- 0
- 73
-
JAVA- 数据库连接池原理
第一次Java程序要在MySQL中执行一条语句,那么就必须建立一个Connection对象,代表了与MySQL数据库的连接通过直接发送你要执行的SQL语句之后,就会调用Connection.close()来关闭和销毁与数据库的连接。为什么要立即关闭呢?因为数据库的连接是一种很重的资源,代表了网络连接、IO等资源。所以如果不是用的话就需要尽早关闭,以避免资源浪费。 JDBC的劣势与不足…- 0
- 0
- 85
-
TinyMCE v4.5.0 可视化HTML编辑器
资源简介:TinyMCE是一个轻量级的基于浏览器的所见即所得编辑器,支持目前流行的各种浏览器,采用JavaScript/ECMAScript开发,主要特性包括主题/模板支持,多语言支持(包括简体中文),支持通过插件的方式进行扩展。功能配置灵活简单(两行代码就可以将编辑器嵌入网页中),支持AJAX。另一特点是加载速度非常快,如果你的服务器采用的脚本语言是 PHP,那还可以进一步优化。最重要的是,Ti…- 0
- 0
- 209
-
Spark- JdbcRDD以及注意事项
先上Demo package com.rz.spark.base import java.sql.DriverManager import org.apache.spark.rdd.JdbcRDD import org.apache.spark.{SparkConf, SparkContext} object JdbcRDDDemo { def main(args: Array[St…- 0
- 0
- 51
-
Storm- 使用Storm实现词频汇总
需求:读取指定目录的数据,并实现单词计数的功能 实现方案: Spout来读取指定目录的数据,作为后续Bolt处理的input 使用一个Bolt把input 的数据,切割分开,我们按照逗号进分割 使用一个Bolt来进行最终的单词次数统计操作并输出 拓扑设计:DataSourceSpout ==>SpiltBolt ==>CountBolt Storm编程注意,…- 0
- 0
- 82
-
Hadoop- 集群时间同步
集群的时间要同步 * 找一台机器 时间服务器 * 所有的机器与这台机器时间进行定时的同步 比如,每日十分钟,同步一次时间 # rpm -qa|grep ntp # vi /etc/ntp.conf # vi /etc/sysconfig/ntpd # Drop root to id 'ntp:ntp' by default. SYNC_HWCLOCK=yes OP…- 0
- 0
- 63
-
HIVE- 数据倾斜
数据倾斜就是由于数据分布不均匀,数据大量集中到一点上,造成数据热点。大多数情况下,分为一下三种情况: 1.map端执行比较快,reduce执行很慢,因为partition造成的数据倾斜。 2.某些reduce很快,某些reduce很慢,也是因为partition造成的数据倾斜。 3.某些map执行很快,某些map执行很慢,这是因为数据本身的分布的不合理性造成的。 造成上面reduce…- 0
- 0
- 60
-
Spark- 使用hiveContext时提交作业报错
在spark上操作hive时不需要搭建hive环境,只需要从现有的hive集群中hive的conf目录下拷贝 hive-site.xml 到spark的conf目录下即可提交程序运行 出现报错 Caused by: org.datanucleus.exceptions.NucleusException: Attempt to invoke the "BONEC…- 0
- 0
- 58
-
Hadoop- MapReduce分布式计算框架原理
分布式计算:原则:移动计算而尽可能减少移动数据(减少网络开销)分布式计算其实就是将单台机器上的计算拓展到多台机器上并行计算。 MapReduce是一种编程模型。Hadoop MapReduce采用Master/slave 结构。只要按照其编程规范,只需要编写少量的业务逻辑代码即可实现一个强大的海量数据并发处理程序。核心思想是:分而治之。Mapper负责分,把一个复杂的业务,任…- 0
- 0
- 105
-
spark- PySparkSQL之PySpark解析Json集合数据
PySparkSQL之PySpark解析Json集合数据 数据样本 12341234123412342|asefr-3423|[{"name":"spark","score":"65"},{"name":"airlow","score":&quo…- 0
- 0
- 76
-
Spark- 常见问题
记录spark使用中常见问题 SparkSQL 日期解析时用到SimpleDateFormat, SimpleDateFormat是线程不安全的。可以使用 FastDateFormat 如: import org.apache.commons.lang3.time.FastDateFormat // 输入文件日期时间格式 // [10/Nov/2018:00:01:02 +0800]…- 0
- 0
- 83
-
Kafka- Kafka架构功能
Kafka是一个高吞吐量的分布式消息系统,一个分布式的发布-订阅消息系统。Kafka是一种快速,可拓展的,设计内在就是分布式的,分区的可复制的提交日志服务。 Apache Kafka与传统消息系统相比,有以下不同: 它设计为一个分布式系统,易于向外拓展; 它同时为发布和订阅提供高吞吐量; 它支持多订阅者,当失败时能自动平衡消费者; 它将消息持久化到磁盘,因此可用于批量消费,例如ETL…- 0
- 0
- 52
-
SpringBoot- springboot集成Redis出现报错:No qualifying bean of type ‘org.springframework.data.redis.connection.RedisConnectionFactory’
Springboot将accessToke写入Redisk 缓存,springboot集成Redis出现报错 No qualifying bean of type 'org.springframework.data.redis.connection.RedisConnectionFactory' 原因:我们在pom.xml中引入了spring-boo…- 0
- 0
- 406
-
CapitalOne 和 GitHub 因数据泄露事件遭遇集体诉讼
来自 thehill 的消息:CapitalOne 和 GitHub 因近期的数据泄露事件而遭遇集体诉讼,事件导致 CapitalOne 泄露超过 1 亿条客户数据。 Tycko&Zavareei LLP 律师事务所周四提起诉讼,辩称 GitHub 和 CapitalOne 在对违规行为的回应中表现出疏忽。该公司代表受违规行为影响的人提起集体诉讼,指控两家公司未能保护客户数据。 在 Capital…- 0
- 0
- 82
-
Spark- 流量日志分析
日志生成 package zx.Utils import java.io.{File, FileWriter} import java.util.Calendar import org.apache.commons.lang.time.{DateUtils, FastDateFormat} import scala.collection.mutable.ArrayBuffer imp…- 0
- 0
- 88
-
Hadoop- 流量汇总程序之如何实现hadoop的序列化接口及代码实现
流量汇总程序需求 统计每一个用户(手机号)锁耗费的总上行流量、下行流量、总流量。 流程剖析 阶段:map 读取一行数据,切分字段, 抽取手机号,上行流量,下行流量 context.write(手机号,bean) 阶段:reduce 汇总遍历每个bean,将其中的上行流量,下行流量分别累加,得到一个新的bean context.write(手机号,新bean); 代码实现…- 0
- 0
- 82
-
Hive- Hive 的基本操作
创建数据库 create database db_hive; use db_hive; create database if not exists db_hive_02; create database if not exists db_hive_01 location '/user/rz_lee/warehouse/db_hive_01.db'; //指定数据库…- 0
- 0
- 96
-
Hadoop- HDFS的API操作
1、引入依赖 <dependency> <groupId>org.apache.hadoop</groupId> <artifactId>hadoop-client</artifactId> <version>2.6.1</version> </dependency> 注:如需手动引入ja…- 0
- 0
- 135
-
Openldap- 大集群身份验证服务
无论在哪个行业,数据安全永远都是摆在首要地位。尤其是在大数据行业上,谁掌握了数据,谁就有可能成为下个亿万富豪的环境中,数据安全更为重要。大数据的安全可以从哪些地方入手,首先可以在身份验证上面入手。在大数据的集群设备上做好身份验证,可以使用openldap来做。 唯有通过openldap管理的账号才能对大数据系统进行访问,没有通过openldap创建的账号是不能login到Hadoop…- 0
- 0
- 74
-
可视化开发laravel应用 Redprint Laravel App Builder CRUD Generator Plus v1.6.32 有安装指导
资源简介:Redprint App Builder is your app development flow on steroid! It’s your perfect Laravel CRUD Booster and App Builder. It has everything from it’s own Terminal Emulator, A Very powerful File Brows…- 0
- 0
- 135
-
Python- and & or 的短路原则
条件1 and 条件2 条件1 or 条件2 短路原则 对于and 如果前面的第一个条件为假,那么这个and前后两个条件组成的表达式的计算结果就一定为假,第二个条件就不会被计算 对于or 如果前面的第一个条件为真,那么这个or前后两个条件组成的表达式的计算结果就一定为真,第二个条件就不会被计算- 0
- 0
- 92
-
Hadoop- Namenode经常挂掉 IPC’s epoch 9 is less than the last promised epoch 10
如题出现Namenode经常挂掉 IPC's epoch 9 is less than the last promised epoch 10, 2019-01-03 05:36:14,774 INFO org.apache.hadoop.hdfs.StateChange: BLOCK* allocate blk_1073741949_1131{UCState=…- 0
- 0
- 198
-
ERROR- 开发常见error
一,数据插入MySql中出现中文乱码 解决办法有: 1。新建数据库选择 create database 'GG' CHARACTER SET 'utf8 ' COLLATE 'utf8_general_ci '; 2。建表的时候: CREATE TABLE `TableA` (`ID` varchar(40) NOT NUL…- 0
- 0
- 69
-
Spark- ERROR Shell: Failed to locate the winutils binary in the hadoop binary path java.io.IOException: Could not locate executable null\bin\winutils.exe in the Hadoop binaries.
报错 G:\APP\JDK\bin\java -Didea.launcher.port=7532 "-Didea.launcher.bin.path=G:\APP\IntelliJ IDEA\bin" -Dfile.encoding=UTF-8 -classpath "G:\APP\JDK\jre\lib\charsets.jar;G:\APP\JDK\…- 0
- 0
- 158
-
Spark- Spark基本工作原理
Spark特点: 1.分布式 spark读取数据时是把数据分布式存储到各个节点内存中 2.主要基于内存(少数情况基于磁盘,如shuffle阶段) 所有计算操作,都是针对多个节点上内存的数据,进行并行操作的 3.迭代式计算 对分布式节点内存中的数据进行处理,处理后的数据可能会移动到其他节点的内存中,当需要用到某些数据时,从这些节点的内存中就能找到,迭代出来使用 Spark与MapRed…- 0
- 0
- 93











































