-
Spark- Spark内核架构原理和Spark架构深度剖析
Spark内核架构原理 1.Driver 选spark节点之一,提交我们编写的spark程序,开启一个Driver进程,执行我们的Application应用程序,也就是我们自己编写的代码。Driver会根据我们对RDD定义的操作,提交一大堆的task去Executor上。Driver注册了一些Executor之后,就可以开始正式执行我们的Spark应用程序了,首先第一步,创建初始RD…- 0
- 0
- 62
-
Hadoop- HDFS的Safemode
Hadoop- HDFS的Safemode hadoop启动时,NameNode启动完后就开始进入安全模式,等待DataNode向NameNode发送block report ,当datanode blocks / total blocks = 99.99%,此时安全模式才会退出 安全模式下的操作: 可以查看文件系统的文件 在安全模式期间我们有些操作是不能进行的,比如不能改变文件系统…- 0
- 0
- 93
-
CapitalOne 和 GitHub 因数据泄露事件遭遇集体诉讼
来自 thehill 的消息:CapitalOne 和 GitHub 因近期的数据泄露事件而遭遇集体诉讼,事件导致 CapitalOne 泄露超过 1 亿条客户数据。 Tycko&Zavareei LLP 律师事务所周四提起诉讼,辩称 GitHub 和 CapitalOne 在对违规行为的回应中表现出疏忽。该公司代表受违规行为影响的人提起集体诉讼,指控两家公司未能保护客户数据。 在 Capital…- 0
- 0
- 70
-
Python- NumPy
NumPy包括的内容 NumPy系统是 Python的一种开源的数值计算扩展,是一个用 python实现的科学计算包。包括: 一个具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组,称为 ndarray(N-dimensional array object ) 用于对整组数据进行快速运算的标准数学函数, func( universal function object) 用于整…- 0
- 0
- 160
-
Hive- Hive安装
Hive安装 1.1下载Hive安装包 官网:http://hive.apache.org/downloads.html 个人建议到这里下载:http://apache.forsale.plus/ 1.2将hive文件上传到HADOOP集群,并解压 将文件上传到 /usr ,解压 tar -zxvf apache-hive-1.2.1-bin.tar.gz -C /usr/ 重命名:…- 0
- 0
- 68
-
ERROR- 开发常见error
一,数据插入MySql中出现中文乱码 解决办法有: 1。新建数据库选择 create database 'GG' CHARACTER SET 'utf8 ' COLLATE 'utf8_general_ci '; 2。建表的时候: CREATE TABLE `TableA` (`ID` varchar(40) NOT NUL…- 0
- 0
- 61
-
Hadoop- DistCp(分布式拷贝)
在实际的生产环境中,我们的企业都有测试集群和生产集群,有的比较大型的企业有多个版本的Hadoop 大数据集群,这时候有个这样的需求,各个集群上的资源需要进行迁移,比如说一些生产集群需要一些测试集群的数据,需要将测试集群的上的数据拷贝到生产集群,这时候就需要使用到分布式拷贝(Distributed Copy). 比较常见的有不同集群之间的数据迁移 hadoop distcp <s…- 0
- 0
- 89
-
可视化开发laravel应用 Redprint Laravel App Builder CRUD Generator Plus v1.6.32 有安装指导
资源简介:Redprint App Builder is your app development flow on steroid! It’s your perfect Laravel CRUD Booster and App Builder. It has everything from it’s own Terminal Emulator, A Very powerful File Brows…- 0
- 0
- 125
-
HIVE- 大数据运维之hive管理
我现在在一家公司负责大数据平台(CDH平台)的运维管理,最常遇见的问题我总结出来,并且继续在下面更新。希望方便自己以后trouble shooting以及方便各位同行解决问题与学习。 关于做运维有几个重要的要点一定一定要遵守的: 遇到问题冷静,冷静,冷静,就山崩都要冷静,心态关乎你是否能将问题解决同时不会给人留下不好的印象。 凡是关于对集群更改与变动的操作,一定要在测试环境测试到没问…- 0
- 0
- 91
-
数据仓库- 建模理念
数仓建模的目标 访问性能:能够快速查询所需的数据,减少数据I/O 数据成本:减少不必要的数据冗余,实现计算结果数据复用,降低大数据系统中的存储成本和计算成本。 使用效率:改善用户使用体验,提高使用数据的效率 数据质量:改善数据统计口径的不一致性,减少数据计算错误的可性,提供高质量的、一致的数据访问平台 大数据的数仓建模需要通过建模的方法更好的组织、存储数据、以便在性能、…- 0
- 0
- 55
-
Spark- JdbcRDD以及注意事项
先上Demo package com.rz.spark.base import java.sql.DriverManager import org.apache.spark.rdd.JdbcRDD import org.apache.spark.{SparkConf, SparkContext} object JdbcRDDDemo { def main(args: Array[St…- 0
- 0
- 41
-
Spark- 使用第三方依赖解析IP地址
使用 github上已有的开源项目 1)git clone https://github.com/wzhe06/ipdatabase.git 2)编译下载的项目: mvn clean package- DskipTests 3)安装jar包到自己的 maven仓库 mvn install: install-file -Dfile=${编译的jar包路径}/target/ipdatab…- 0
- 0
- 97
-
spark- PySparkSQL之PySpark解析Json集合数据
PySparkSQL之PySpark解析Json集合数据 数据样本 12341234123412342|asefr-3423|[{"name":"spark","score":"65"},{"name":"airlow","score":&quo…- 0
- 0
- 63
-
Apache Kudu 1.10.0 发布,Hadoop 生态数据存储系统
Apache Kudu 1.10.0 发布了,Kudu 是一个支持结构化数据的开源存储引擎,具有低延迟随机读取与高效分析读取模式。它基于 Apache Hadoop 生态系设计,并支持与 Apache 软件基金会其它数据分析项目集成。 此版本带来的新特性包括: Kudu 现在通过使用 Apache Spark 实现的作业支持完整和增量表备份。此外,它还支持通过使用 Apache Spark 实现的…- 0
- 0
- 116
-
Hive- Hive 按时间定期插入分区表
写个shell脚本Hive 按时间定期插入分区表,由于今天统计的是昨天的数据所以日期减一。 #!/bin/bash DT=`date -d '-1 day' "+%Y-%m-%d"` #如果某天的数据有误需要重跑 if [ $1 ];then DT=$1 fi SQL=" insert overwrite table t…- 0
- 0
- 45
-
Hadoop HA- hadoop集群部署
前期部署,至少准备3台服务器(可以是虚拟机) 1、linux系统环境准备 ip地址配置 hostname配置 hosts映射配置 关闭防火墙 service iptables stop ,也可以设置防火墙不开机自启动 chkconfig iptables off init启动级别修改 2.java环境的配置 上传jdk,解压,修改/etc/profile 3.zookeeper集群…- 0
- 0
- 102
-
Hive- Hive Web Interface
当我们安装好hive时候,我们启动hive的UI界面的时候,命令: hive –-service hwi ,报错,没有war包 我们查看hive/conf/hive-default.xml.template,查找hwi 把这3台属性复制,添加到hive-site.xml里面, vim hive-site.xml <property> <name>hive.hw…- 0
- 0
- 101
-
DataWarehouse- 从面试定位自己的水平
1.讲一下什么是维度表和事实表。用户资料表算是什么类型表。 2. 维度建模属于第几范式,让你对维度建模改进,有什么思路吗。 3. 了解数据血缘分析吗,让你实现的话有什么技术方案,感觉难点在哪。 4. 了解数据分层吗,讲一下分四层或者五层各有什么优劣。自己摸你一个场景,给出不同的方案。 5. 数据口径不一致的问题一般在什么情况下会发生,怎么避免。- 0
- 0
- 56
-
Hadoop- 流量汇总程序之如何实现hadoop的序列化接口及代码实现
流量汇总程序需求 统计每一个用户(手机号)锁耗费的总上行流量、下行流量、总流量。 流程剖析 阶段:map 读取一行数据,切分字段, 抽取手机号,上行流量,下行流量 context.write(手机号,bean) 阶段:reduce 汇总遍历每个bean,将其中的上行流量,下行流量分别累加,得到一个新的bean context.write(手机号,新bean); 代码实现…- 0
- 0
- 70
-
SpringBoot- springboot集成Redis出现报错:No qualifying bean of type ‘org.springframework.data.redis.connection.RedisConnectionFactory’
Springboot将accessToke写入Redisk 缓存,springboot集成Redis出现报错 No qualifying bean of type 'org.springframework.data.redis.connection.RedisConnectionFactory' 原因:我们在pom.xml中引入了spring-boo…- 0
- 0
- 370
-
Spark- ERROR Shell: Failed to locate the winutils binary in the hadoop binary path java.io.IOException: Could not locate executable null\bin\winutils.exe in the Hadoop binaries.
运行 mport org.apache.log4j.{Level, Logger} import org.apache.spark.rdd.RDD import org.apache.spark.{SparkConf, SparkContext} /** * Created by Lee_Rz on 2017/8/30. */ object SparkDemo { def main(args: A…- 0
- 0
- 132
-
Spark- Spark从SFTP中读取zip压缩文件数据做计算
我们遇到个特别的需求,一个数据接入的流程跑的太慢,需要升级为用大数据方式去处理,提高效率。 数据: 数据csv文件用Zip 压缩后放置在SFTP中 数据来源: SFTP 数据操作: 文件和它的压缩包一致,后缀不同。文件名中包含渠道、日期、操作标记("S"追加,"N"全量,"D"删除) 升级前的操作方式: she…- 0
- 0
- 112
-
Spark- Transformation实战
RDD的算子分为两类,是 Trans formation(Lazy),一类是 Action(触发任务执行 RDD不存在真正要计算的数据,而是记录了RDD的转换关系(调用了什么方法,传入什么函数) RDD的 Trans formation的特点 1. lazy 2.生成新的RDD package cn.rzlee.spark.core import org.…- 0
- 0
- 66
-
Hadoop- Namenode经常挂掉 IPC’s epoch 9 is less than the last promised epoch 10
如题出现Namenode经常挂掉 IPC's epoch 9 is less than the last promised epoch 10, 2019-01-03 05:36:14,774 INFO org.apache.hadoop.hdfs.StateChange: BLOCK* allocate blk_1073741949_1131{UCState=…- 0
- 0
- 155
-
Zookeeper- Error contacting service. It is probably not running解决方案和原理
搭建启动Zookeeper集群出现Error contacting service. It is probably not running解决方案和原理 1.关闭防火墙 1 2 3 4 [root@srv01 bin]# zkServer.sh start JMX enabled by default Using config: /usr/zookeeper/bin/../con…- 0
- 0
- 126
-
Spark- 使用hiveContext时提交作业报错
在spark上操作hive时不需要搭建hive环境,只需要从现有的hive集群中hive的conf目录下拷贝 hive-site.xml 到spark的conf目录下即可提交程序运行 出现报错 Caused by: org.datanucleus.exceptions.NucleusException: Attempt to invoke the "BONEC…- 0
- 0
- 49
-
Spark- Spark基本工作原理
Spark特点: 1.分布式 spark读取数据时是把数据分布式存储到各个节点内存中 2.主要基于内存(少数情况基于磁盘,如shuffle阶段) 所有计算操作,都是针对多个节点上内存的数据,进行并行操作的 3.迭代式计算 对分布式节点内存中的数据进行处理,处理后的数据可能会移动到其他节点的内存中,当需要用到某些数据时,从这些节点的内存中就能找到,迭代出来使用 Spark与MapRed…- 0
- 0
- 80
-
Spark- ERROR Shell: Failed to locate the winutils binary in the hadoop binary path java.io.IOException: Could not locate executable null\bin\winutils.exe in the Hadoop binaries.
报错 G:\APP\JDK\bin\java -Didea.launcher.port=7532 "-Didea.launcher.bin.path=G:\APP\IntelliJ IDEA\bin" -Dfile.encoding=UTF-8 -classpath "G:\APP\JDK\jre\lib\charsets.jar;G:\APP\JDK\…- 0
- 0
- 118
-
大数据- 自定义Log4j日记
1.新建一个java project,在src下新建一个lib文件夹和 rescources 文件夹,resources文件夹不能命名错误。 点击File——》project Structure...打开根据下图操作 把相关jar包放进lib文件夹里并绑定。 新建一个java文件 Log4jTest.java 和 HadoopLog4j.java 1 2 3 4 5 6…- 0
- 0
- 44
-
Architect v2.0.6_HTML网站在线生成器
资源简介:Architect是功能强大且易于使用的HTML静态网站在线生成器,它除了具有HTML静态网站在线生成的功能,同时还提供独特的功能,如主题和模板的选择,干净整洁的代码,最佳的可视化CSS和图像编辑器 以及更多更多的功能。Architect 网站在线生成器功能特性易于安装、订阅/账单、外观编辑、文本编辑器、高级拖放功能、完整的文档、上下文菜单、可翻译、多种元素、在线CSS编辑器、发布或导出…- 0
- 0
- 141
-
Spark- SparkSQL中 Row.getLong 出现NullPointerException错误的处理方法
在SparkSQL中获取Row的值,而且Row的字段允许null时,在取值的时候取到null赋值给新的变量名会报NullPointerException错误, 可以先用row.isNullAt(index)去判断该字段的值是否为空 首先上错误 修改为先初始化变量,判断row.isNullAt(6) 如果不为空就将值赋值给变量- 0
- 0
- 99
-
华为发布 Volcano 开源项目,方便 AI、大数据、基因、渲染等诸多行业通用计算框架接入
Volcano 是基于 Kubernetes 的批处理系统,源自于华为云 AI 容器。Volcano 方便 AI、大数据、基因、渲染等诸多行业通用计算框架接入,提供高性能任务调度引擎,高性能异构芯片管理,高性能任务运行管理等能力。 授权协议: Apache 开发语言: Google Go 操作系统: Linux 开发厂商: 华为 整体架构 Volcano 提供一整套目前 K8S 在批量和弹性工作负…- 0
- 0
- 228
-
Hadoop- MapReduce分布式计算框架原理
分布式计算:原则:移动计算而尽可能减少移动数据(减少网络开销)分布式计算其实就是将单台机器上的计算拓展到多台机器上并行计算。 MapReduce是一种编程模型。Hadoop MapReduce采用Master/slave 结构。只要按照其编程规范,只需要编写少量的业务逻辑代码即可实现一个强大的海量数据并发处理程序。核心思想是:分而治之。Mapper负责分,把一个复杂的业务,任…- 0
- 0
- 76
-
Hadoop- NameNode和Secondary NameNode元数据管理机制
元数据的存储机制A、内存中有一份完整的元数据(内存meta data)B、磁盘有一个“准完整”的元数据镜像(fsimage)文件(在namenode的工作目录中)C、用于衔接内存metadata和持久化元数据镜像fsimage之间的操作日志(edits文件)NameNode和Secondary NameNode元数据管理机制客户端每次对文件的操作,如果涉及到元数据的更新(读除外),比如…- 0
- 0
- 48