-
Hadoop HA- hadoop集群部署
前期部署,至少准备3台服务器(可以是虚拟机) 1、linux系统环境准备 ip地址配置 hostname配置 hosts映射配置 关闭防火墙 service iptables stop ,也可以设置防火墙不开机自启动 chkconfig iptables off init启动级别修改 2.java环境的配置 上传jdk,解压,修改/etc/profile 3.zookeeper集群…- 0
- 0
- 109
-
Spark- SparkStreaming可更新状态的实例
Producer package zx.zx.sparkkafka import java.util.Properties import kafka.producer.{KeyedMessage, Producer, ProducerConfig} import scala.util.Random /** * Created by 166 on 2017/9/6. */ object…- 0
- 0
- 93
-
Hadoop- 分布式资源管理YARN架构讲解
YARN是分布式资源管理,每一台机器都要去管理该台计算机的资源,Yarn负责为MapReduce程序分配运算硬件资源。每一台机器的管理者叫 NodeManager,整个集群的管理者管理着整个集群的NodeManager,叫 ResourceManager。资源调度和资源隔离是YARN作为一个资源管理系统最重要和最基础的两个功能。资源调度由 ResourceManager 完成,而资源…- 0
- 0
- 89
-
Hadoop- DistCp(分布式拷贝)
在实际的生产环境中,我们的企业都有测试集群和生产集群,有的比较大型的企业有多个版本的Hadoop 大数据集群,这时候有个这样的需求,各个集群上的资源需要进行迁移,比如说一些生产集群需要一些测试集群的数据,需要将测试集群的上的数据拷贝到生产集群,这时候就需要使用到分布式拷贝(Distributed Copy). 比较常见的有不同集群之间的数据迁移 hadoop distcp <s…- 0
- 0
- 93
-
Hadoop- MapReduce在实际应用中常见的调优
1、Reduce Task Number 通常来说一个block就对应一个map任务进行处理,reduce任务如果人工不去设置干预的话就一个reduce。reduce任务的个数可以通过在程序中设置 job.setNumReduceTasks(个数); ,也可在配置文件上设置reduce任务个数,默认为1, 或者在代码config中配置 Configuration configura…- 0
- 0
- 78
-
Spark- Spark从SFTP中读取zip压缩文件数据做计算
我们遇到个特别的需求,一个数据接入的流程跑的太慢,需要升级为用大数据方式去处理,提高效率。 数据: 数据csv文件用Zip 压缩后放置在SFTP中 数据来源: SFTP 数据操作: 文件和它的压缩包一致,后缀不同。文件名中包含渠道、日期、操作标记("S"追加,"N"全量,"D"删除) 升级前的操作方式: she…- 0
- 0
- 119
-
Spark- 使用第三方依赖解析IP地址
使用 github上已有的开源项目 1)git clone https://github.com/wzhe06/ipdatabase.git 2)编译下载的项目: mvn clean package- DskipTests 3)安装jar包到自己的 maven仓库 mvn install: install-file -Dfile=${编译的jar包路径}/target/ipdatab…- 0
- 0
- 103
-
CDH- cdh kafka已经卸载了,但是服务器还有kafka-topics这些命令可用,导致重新安装kafka出现问题
CDH- cdh kafka已经卸载了,但是服务器还有kafka-topics这些命令可用,导致重新安装kafka出现问题 cdh界面删除并不会将 kafka数据删除,需要将kafka集群节点 var/local/kafka/data 清理掉 然后将zk brokers/topics 下的topic也清理掉- 0
- 0
- 53
-
CDH- 集群时间同步ntp问题解决
在CDH集群中发现有两台机器获取不到心跳(),导致监控不了机器状态,出现告警 可以使用ntpstat检查与ntp 服务器的时间偏差状态 使用 ntpstat 发现没有同步到ntp时间服务器,运行 ntpdate ip 添加时间同步服务器出现报错 the NTP socket is in use, exiting 网上搜了一下,大部分的建议是…- 0
- 0
- 65
-
可视化物联网编排工具Node-RED 1.0 发布
Node-RED 是 IBM 新兴技术服务团队构建的可视化物联网编排工具,可基于浏览器的流程编辑器连接设备、服务器和 API 应用。Node-RED 1.0 已经发布,内容如下:异步消息传递:此版本将节点间传递的消息更改为始终是异步的,而不是有时是异步的,有时是同步的,具体取决于各个节点的实现Node Send API:现在节点可以使用一个新的 API 来处理运行时中的消息异…- 0
- 0
- 138
-
Sqooop- 使用Sqoop进行数据的导入导出
Sqoop是Apache旗下的一个开源框架,专门用来做数据的导入和导出。 官网:https://sqoop.apache.org/ Sqoop的安装非常简单,只需要把下载下来的tar包解压设置两个环境变量就可以了 1.安装部署 下载版本:sqoop-1.4.6.bin__hadoop-2.0.4-alpha.tar.gz 官网:http://mirror.bit.edu.cn/apa…- 0
- 0
- 145
-
Openldap- 大集群身份验证服务
无论在哪个行业,数据安全永远都是摆在首要地位。尤其是在大数据行业上,谁掌握了数据,谁就有可能成为下个亿万富豪的环境中,数据安全更为重要。大数据的安全可以从哪些地方入手,首先可以在身份验证上面入手。在大数据的集群设备上做好身份验证,可以使用openldap来做。 唯有通过openldap管理的账号才能对大数据系统进行访问,没有通过openldap创建的账号是不能login到Hadoop…- 0
- 0
- 71
-
-
Python- NumPy
NumPy包括的内容 NumPy系统是 Python的一种开源的数值计算扩展,是一个用 python实现的科学计算包。包括: 一个具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组,称为 ndarray(N-dimensional array object ) 用于对整组数据进行快速运算的标准数学函数, func( universal function object) 用于整…- 0
- 0
- 174
-
Spark- 数据清洗
输入输出转化工具类 package com.rz.mobile_tag.log import org.apache.spark.sql.Row import org.apache.spark.sql.types.{LongType, StringType, StructField, StructType} /** * 访问日志转换(输入==>输出)工具类 */ object A…- 0
- 0
- 100
-
Apache Kudu 1.10.0 发布,Hadoop 生态数据存储系统
Apache Kudu 1.10.0 发布了,Kudu 是一个支持结构化数据的开源存储引擎,具有低延迟随机读取与高效分析读取模式。它基于 Apache Hadoop 生态系设计,并支持与 Apache 软件基金会其它数据分析项目集成。 此版本带来的新特性包括: Kudu 现在通过使用 Apache Spark 实现的作业支持完整和增量表备份。此外,它还支持通过使用 Apache Spark 实现的…- 0
- 0
- 121
-
Python- 贪婪与非贪婪
python运行匹配时,如果没有人为限定,默认是贪婪模式。 import re a = 'python 22222java34bigdata' r = re.findall('[a-z]{3}',a) # 打印三个字符 rr = re.findall('[a-z]{3,6}',a) # 匹配到的长度最小为3,最长不能超过 r…- 0
- 0
- 102
-
Spark- RDD持久化
官方原文: RDD Persistence One of the most important capabilities in Spark is persisting (or caching) a dataset in memory across operations. When you persist an RDD, each node stores any partitions …- 0
- 0
- 90
-
Hadoop- 流量汇总程序之如何实现hadoop的序列化接口及代码实现
流量汇总程序需求 统计每一个用户(手机号)锁耗费的总上行流量、下行流量、总流量。 流程剖析 阶段:map 读取一行数据,切分字段, 抽取手机号,上行流量,下行流量 context.write(手机号,bean) 阶段:reduce 汇总遍历每个bean,将其中的上行流量,下行流量分别累加,得到一个新的bean context.write(手机号,新bean); 代码实现…- 0
- 0
- 77
-
Architect v2.0.6_HTML网站在线生成器
资源简介:Architect是功能强大且易于使用的HTML静态网站在线生成器,它除了具有HTML静态网站在线生成的功能,同时还提供独特的功能,如主题和模板的选择,干净整洁的代码,最佳的可视化CSS和图像编辑器 以及更多更多的功能。Architect 网站在线生成器功能特性易于安装、订阅/账单、外观编辑、文本编辑器、高级拖放功能、完整的文档、上下文菜单、可翻译、多种元素、在线CSS编辑器、发布或导出…- 0
- 0
- 148
-
CapitalOne 和 GitHub 因数据泄露事件遭遇集体诉讼
来自 thehill 的消息:CapitalOne 和 GitHub 因近期的数据泄露事件而遭遇集体诉讼,事件导致 CapitalOne 泄露超过 1 亿条客户数据。 Tycko&Zavareei LLP 律师事务所周四提起诉讼,辩称 GitHub 和 CapitalOne 在对违规行为的回应中表现出疏忽。该公司代表受违规行为影响的人提起集体诉讼,指控两家公司未能保护客户数据。 在 Capital…- 0
- 0
- 78
-
HIVE- SCD缓慢变化维
SCD缓慢变化维,比如一个用户维表,用户属性会变化,但是不会变化很剧烈,可能一年只会变化一两次,也不会所有用户的属性都会有变化,只有少量的数据发生变化,所以叫缓慢变化维。这种问题就是由于维度的变化所造成的。 解决方式: 是否保留历史数据 保留多久历史数据 历史状态如何与事实表关联 SCD1 保留最新状态 注册日期 用户编号 手机号码 2019-01-01 0001 111111 20…- 0
- 0
- 66
-
HIVE- 大数据运维之hive管理
我现在在一家公司负责大数据平台(CDH平台)的运维管理,最常遇见的问题我总结出来,并且继续在下面更新。希望方便自己以后trouble shooting以及方便各位同行解决问题与学习。 关于做运维有几个重要的要点一定一定要遵守的: 遇到问题冷静,冷静,冷静,就山崩都要冷静,心态关乎你是否能将问题解决同时不会给人留下不好的印象。 凡是关于对集群更改与变动的操作,一定要在测试环境测试到没问…- 0
- 0
- 98
-
Spark- 共享变量
Shared Variables Normally, when a function passed to a Spark operation (such as map or reduce) is executed on a remote cluster node, it works on separate copies of all the variables used in the…- 0
- 0
- 86
-
PyMiner-py2cn 数据分析工具:开源界的MATLAB
PyMiner 是一款数据处理、分析、建模、评估软件,目的是使 pandas\sklearn 的操作进行可视化。项目开发环境基于Window 10 X64,使用 Python3.8+PyQt5.15+Pycharm 进行技术开发。同时,此项目支持跨平台,这意味着即使是Linux、Mac也可以使用或开发此软件。 安装 下载项目源码 安装python并打开命令行工具,使用 pip install -r…- 0
- 0
- 68
-
Spark- 计算每个学科最受欢迎的老师
日志类型 测试数据 http://bigdata.myit.com/zhangsan http://bigdata.myit.com/zhangsan http://bigdata.myit.com/zhangsan http://bigdata.myit.com/zhangsan http://bigdata.myit.com/zhangsan http://java.myit.c…- 0
- 0
- 86
-
JAVA- 数据库连接池原理
第一次Java程序要在MySQL中执行一条语句,那么就必须建立一个Connection对象,代表了与MySQL数据库的连接通过直接发送你要执行的SQL语句之后,就会调用Connection.close()来关闭和销毁与数据库的连接。为什么要立即关闭呢?因为数据库的连接是一种很重的资源,代表了网络连接、IO等资源。所以如果不是用的话就需要尽早关闭,以避免资源浪费。 JDBC的劣势与不足…- 0
- 0
- 79
-
Hbase- Hbase客户端读写数据时的路由流程
1、客户端先到zookeeper查找hbase:meta所在的RegionServer服务器 2、去hbase:meta表查找自己所要的数据所在的region server 3、去目标region server上的region要自己的数据 可以看出客户端查找数据可以不经过master- 0
- 0
- 54
-
Spark- 优化后的 shuffle 操作原理剖析
在spark新版本中,引入了 consolidation 机制,也就是说提出了ShuffleGroup的概念。一个 ShuffleMapTask 将数据写入 ResultTask 数量的本地文本,这个不会变。但是,当下一个 ShuffleMapTask 运行的时候,可以直接将数据写入之前的 ShuffleMapTask 的本地文件。相当于是,对多个 ShuffleMapTask 输出…- 0
- 0
- 50
-
Storm- 使用Storm实现词频汇总
需求:读取指定目录的数据,并实现单词计数的功能 实现方案: Spout来读取指定目录的数据,作为后续Bolt处理的input 使用一个Bolt把input 的数据,切割分开,我们按照逗号进分割 使用一个Bolt来进行最终的单词次数统计操作并输出 拓扑设计:DataSourceSpout ==>SpiltBolt ==>CountBolt Storm编程注意,…- 0
- 0
- 75
-
Spark- 根据ip地址计算归属地
主要考察的是广播变量的使用: 1、将要广播的数据 IP 规则数据存放在HDFS上,(广播出去的内容一旦广播出去产就不能改变了,如果需要实时改变的规则,可以将规则放到Redis中) 2、在Spark中转成RDD,然后收集到Driver端, 3、把 IP 规则数据广播到Executor中。Driver端广播变量的引用是怎样跑到 Executor中的呢? Task在Driver端生成的,…- 0
- 0
- 144
-
Spark- Transformation实战
RDD的算子分为两类,是 Trans formation(Lazy),一类是 Action(触发任务执行 RDD不存在真正要计算的数据,而是记录了RDD的转换关系(调用了什么方法,传入什么函数) RDD的 Trans formation的特点 1. lazy 2.生成新的RDD package cn.rzlee.spark.core import org.…- 0
- 0
- 74
-
Hadoop- NameNode和Secondary NameNode元数据管理机制
元数据的存储机制A、内存中有一份完整的元数据(内存meta data)B、磁盘有一个“准完整”的元数据镜像(fsimage)文件(在namenode的工作目录中)C、用于衔接内存metadata和持久化元数据镜像fsimage之间的操作日志(edits文件)NameNode和Secondary NameNode元数据管理机制客户端每次对文件的操作,如果涉及到元数据的更新(读除外),比如…- 0
- 0
- 53