考察spark自定义排序
方式一:自定义一个类继承Ordered和序列化,Driver端将数据变成RDD,整理数据转成自定义类类型的RDD,使用本身排序即可。
package com.rz.spark.base
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
// 自定义排序
object CustomSort1 {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName(this.getClass.getSimpleName).setMaster("local[2]")
val sc = new SparkContext(conf)
// 排序规则:首先按照颜值的降序,如果产值相等,再按照年龄的升序
val users = Array("xiaohong 30 50","xiaobai 90 50","xiaozhang 78 100", "xiaolong 66 66")
// 将Driver端的数据并行化变成RDD
val lines:RDD[String] = sc.parallelize(users)
// 切分整理数据
val userRDD: RDD[User] = lines.map(line => {
val fields = line.split(" ")
val name = fields(0)
val age = fields(1).toInt
val fv = fields(2).toInt
//(name, age, fv)
new User(name, age, fv)
})
// 不满足要求
// tpRDD.sortBy(tp=> tp._3, false)
// 将RDD里面封装在User类型的数据进行排序
val sorted: RDD[User] = userRDD.sortBy(u=>u)
val result = sorted.collect()
println(result.toBuffer)
sc.stop()
}
}
// shuffle时数据要通过网络传输,需要对数据进行序列化
class User(val name:String, val age:Int, val fv:Int) extends Ordered[User] with Serializable {
override def compare(that: User): Int = {
if (this.fv == that.fv){
this.age - that.age
}else{
-(this.fv - that.fv)
}
}
override def toString: String = s"name: $name, age: $age, fv: $fv"
}
方式2:自定义一个类继承Ordered和序列化,Driver端将数据变成RDD,整理数据转成元组类型的RDD,使用就自定义类做排序规则。
package com.rz.spark.base
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.rdd.RDD
object CustomSort2 {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName(this.getClass.getSimpleName).setMaster("local[2]")
val sc = new SparkContext(conf)
// 排序规则:首先按照颜值的降序,如果产值相等,再按照年龄的升序
val users = Array("xiaohong 30 50","xiaobai 90 50","xiaozhang 66 50", "xiaolong 66 66")
// 将Driver端的数据并行化变成RDD
val lines:RDD[String] = sc.parallelize(users)
// 切分整理数据
val userRDD: RDD[(String, Int, Int)] = lines.map(line => {
val fields = line.split(" ")
val name = fields(0)
val age = fields(1).toInt
val fv = fields(2).toInt
(name, age, fv)
})
// 排序(传入了一个排序规则, 不会改变数据的格式,只会以改变顺序) class Boy不是多例
val sorted: RDD[(String, Int, Int)] = userRDD.sortBy(tp=> new Boy(tp._2,tp._3))
val result = sorted.collect()
println(result.toBuffer)
sc.stop()
}
}
// shuffle时数据要通过网络传输,需要对数据进行序列化
class Boy(val age:Int, val fv:Int) extends Ordered[Boy] with Serializable {
override def compare(that: Boy): Int = {
if (this.fv == that.fv){
this.age - that.age
}else{
-(this.fv - that.fv)
}
}
}
方式3:作用多例的case class来做排序规则
package com.rz.spark.base
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.rdd.RDD
object CustomSort3 {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName(this.getClass.getSimpleName).setMaster("local[2]")
val sc = new SparkContext(conf)
// 排序规则:首先按照颜值的降序,如果产值相等,再按照年龄的升序
val users = Array("xiaohong 30 50","xiaobai 90 50","xiaozhang 66 50", "xiaolong 66 66")
// 将Driver端的数据并行化变成RDD
val lines:RDD[String] = sc.parallelize(users)
// 切分整理数据
val userRDD: RDD[(String, Int, Int)] = lines.map(line => {
val fields = line.split(" ")
val name = fields(0)
val age = fields(1).toInt
val fv = fields(2).toInt
(name, age, fv)
})
// 排序(传入了一个排序规则, 不会改变数据的格式,只会以改变顺序)
val sorted: RDD[(String, Int, Int)] = userRDD.sortBy(tp=> Man(tp._2,tp._3))
val result = sorted.collect()
println(result.toBuffer)
sc.stop()
}
}
// shuffle时数据要通过网络传输,需要对数据进行序列化
// case class 本身已经实现序列化且多例 (缺点是规则写死,无法用新的规则排序,可用隐式转换实现)
case class Man(age:Int, fv:Int) extends Ordered[Man]{
override def compare(that: Man): Int = {
if (this.fv == that.fv){
this.age - that.age
}else{
-(this.fv - that.fv)
}
}
}
方式4,通过隐式参数指定灵活的排序规则
package com.rz.spark.base
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.rdd.RDD
object CustomSort4 {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName(this.getClass.getSimpleName).setMaster("local[2]")
val sc = new SparkContext(conf)
// 排序规则:首先按照颜值的降序,如果产值相等,再按照年龄的升序
val users = Array("xiaohong 30 50","xiaobai 90 50","xiaozhang 66 50", "xiaolong 66 66")
// 将Driver端的数据并行化变成RDD
val lines:RDD[String] = sc.parallelize(users)
// 切分整理数据
val userRDD: RDD[(String, Int, Int)] = lines.map(line => {
val fields = line.split(" ")
val name = fields(0)
val age = fields(1).toInt
val fv = fields(2).toInt
(name, age, fv)
})
// 排序(传入了一个排序规则, 不会改变数据的格式,只会以改变顺序)
// 传入一个Ordering类型的隐式参数
import SortRules.OrderingHero
val sorted: RDD[(String, Int, Int)] = userRDD.sortBy(tp=> Hero(tp._2,tp._3))
val result = sorted.collect()
println(result.toBuffer)
sc.stop()
}
}
// shuffle时数据要通过网络传输,需要对数据进行序列化
// case class 本身已经实现序列化,不指定固定的排序规则,由隐式参数指定
case class Hero(age:Int, fv:Int)
方式5:元组有自己的compareTo方法,充分利用元组的比较规则,元组的比较规则:先比第一,相等再比第二个。如果还满足不了再自定义排序的类来排序
package com.rz.spark.base
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.rdd.RDD
object CustomSort5 {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName(this.getClass.getSimpleName).setMaster("local[2]")
val sc = new SparkContext(conf)
// 排序规则:首先按照颜值的降序,如果产值相等,再按照年龄的升序
val users = Array("xiaohong 30 50","xiaobai 90 50","xiaozhang 66 50", "xiaolong 66 66")
// 将Driver端的数据并行化变成RDD
val lines:RDD[String] = sc.parallelize(users)
// 切分整理数据
val userRDD: RDD[(String, Int, Int)] = lines.map(line => {
val fields = line.split(" ")
val name = fields(0)
val age = fields(1).toInt
val fv = fields(2).toInt
(name, age, fv)
})
// 排序(传入了一个排序规则, 不会改变数据的格式,只会以改变顺序)
// 充分利用元组的比较规则,元组的比较规则:先比第一,相等再比第二个
val sorted: RDD[(String, Int, Int)] = userRDD.sortBy(tp=> (-tp._3,tp._2))
val result = sorted.collect()
println(result.toBuffer)
sc.stop()
}
}
方式6:和方式5相似,但是用到自定义的隐式参数作排序规则
package com.rz.spark.base
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
object CustomSort6 {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName(this.getClass.getSimpleName).setMaster("local[2]")
val sc = new SparkContext(conf)
// 排序规则:首先按照颜值的降序,如果产值相等,再按照年龄的升序
val users = Array("xiaohong 30 50","xiaobai 90 50","xiaozhang 66 50", "xiaolong 66 66")
// 将Driver端的数据并行化变成RDD
val lines:RDD[String] = sc.parallelize(users)
// 切分整理数据
val userRDD: RDD[(String, Int, Int)] = lines.map(line => {
val fields = line.split(" ")
val name = fields(0)
val age = fields(1).toInt
val fv = fields(2).toInt
(name, age, fv)
})
// 排序(传入了一个排序规则, 不会改变数据的格式,只会以改变顺序)
// 充分利用元组的比较规则,元组的比较规则:先比第一,相等再比第二个
val sorted: RDD[(String, Int, Int)] = userRDD.sortBy(tp=> (-tp._3,tp._2))
val result = sorted.collect()
println(result.toBuffer)
sc.stop()
}
}


















