-
Storm- Storm作业提交运行流程
用户编写Storm Topology 使用client提交Topology给Nimbus Nimbus指派Task给Supervisor Supervisor为Task启动Worker Worker执行Task- 0
- 0
- 56
-
Hadoop- Namenode经常挂掉 IPC’s epoch 9 is less than the last promised epoch 10
如题出现Namenode经常挂掉 IPC's epoch 9 is less than the last promised epoch 10, 2019-01-03 05:36:14,774 INFO org.apache.hadoop.hdfs.StateChange: BLOCK* allocate blk_1073741949_1131{UCState=…- 0
- 0
- 131
-
Hadoop- 集群时间同步
集群的时间要同步 * 找一台机器 时间服务器 * 所有的机器与这台机器时间进行定时的同步 比如,每日十分钟,同步一次时间 # rpm -qa|grep ntp # vi /etc/ntp.conf # vi /etc/sysconfig/ntpd # Drop root to id 'ntp:ntp' by default. SYNC_HWCLOCK=yes OP…- 0
- 0
- 49
-
Hadoop- Hadoop环境搭建
Windows下Hadoop的安装 准备工具:64位的JDK,Hadoop安装包(我使用的是2.6.1) JDK下载地址 官网: http://www.oracle.com/technetwork/java/javase/downloads/index.html Hadoop下载地址 官网:http://hadoop.apache.org/ 1.安装JDK环境,配置系统环境变量. 选…- 0
- 0
- 53
-
Spark- Checkpoint原理剖析
Checkpoint,是Spark 提供的一个比较高级的功能。有的时候,比如说,我们的 Spark 应用程序,特别的复杂,然后从初始的RDD开始,到最后拯个应用程序完成,有非常多的步骤,比如超过20个transformation 操作。而且整个应用运行的时间也特别的长,比如通常要运行1-5小时。 在上述的情况下,就比较适合使用checkpoint 功能。因为,对于特别复杂的 Spar…- 0
- 0
- 61
-
CapitalOne 和 GitHub 因数据泄露事件遭遇集体诉讼
来自 thehill 的消息:CapitalOne 和 GitHub 因近期的数据泄露事件而遭遇集体诉讼,事件导致 CapitalOne 泄露超过 1 亿条客户数据。 Tycko&Zavareei LLP 律师事务所周四提起诉讼,辩称 GitHub 和 CapitalOne 在对违规行为的回应中表现出疏忽。该公司代表受违规行为影响的人提起集体诉讼,指控两家公司未能保护客户数据。 在 Capital…- 0
- 0
- 59
-
-
Hadoop- HDFS的Safemode
Hadoop- HDFS的Safemode hadoop启动时,NameNode启动完后就开始进入安全模式,等待DataNode向NameNode发送block report ,当datanode blocks / total blocks = 99.99%,此时安全模式才会退出 安全模式下的操作: 可以查看文件系统的文件 在安全模式期间我们有些操作是不能进行的,比如不能改变文件系统…- 0
- 0
- 76
-
HIVE- SCD缓慢变化维
SCD缓慢变化维,比如一个用户维表,用户属性会变化,但是不会变化很剧烈,可能一年只会变化一两次,也不会所有用户的属性都会有变化,只有少量的数据发生变化,所以叫缓慢变化维。这种问题就是由于维度的变化所造成的。 解决方式: 是否保留历史数据 保留多久历史数据 历史状态如何与事实表关联 SCD1 保留最新状态 注册日期 用户编号 手机号码 2019-01-01 0001 111111 20…- 0
- 0
- 38
-
Kafka- Kafka架构功能
Kafka是一个高吞吐量的分布式消息系统,一个分布式的发布-订阅消息系统。Kafka是一种快速,可拓展的,设计内在就是分布式的,分区的可复制的提交日志服务。 Apache Kafka与传统消息系统相比,有以下不同: 它设计为一个分布式系统,易于向外拓展; 它同时为发布和订阅提供高吞吐量; 它支持多订阅者,当失败时能自动平衡消费者; 它将消息持久化到磁盘,因此可用于批量消费,例如ETL…- 0
- 0
- 32
-
Linux- AWS之EC2大数据集群定时开关机
众所周知,云计算就是在计算你的钱,每当ec2开起来就要开始计费。当用户购买了一个庞大的与服务器做一个集群,尤其是用来做大数据集群,这些服务器的配置相当高,每台服务器所需要的费用不菲。其实在很多时候没能够完全利用起其全部的资源,尤其在空闲时间,在夜间没有作业的情况下,这些服务器完全处于空闲的状态,却时刻在计费,这是相当不划算的。于是有这样一个方案,我们是不是可以在机器处于空闲的状态时将…- 0
- 0
- 99
-
Spark- JdbcRDD以及注意事项
先上Demo package com.rz.spark.base import java.sql.DriverManager import org.apache.spark.rdd.JdbcRDD import org.apache.spark.{SparkConf, SparkContext} object JdbcRDDDemo { def main(args: Array[St…- 0
- 0
- 26
-
Spark- Spark从SFTP中读取zip压缩文件数据做计算
我们遇到个特别的需求,一个数据接入的流程跑的太慢,需要升级为用大数据方式去处理,提高效率。 数据: 数据csv文件用Zip 压缩后放置在SFTP中 数据来源: SFTP 数据操作: 文件和它的压缩包一致,后缀不同。文件名中包含渠道、日期、操作标记("S"追加,"N"全量,"D"删除) 升级前的操作方式: she…- 0
- 0
- 98
-
HIVE- 大数据运维之hive管理
我现在在一家公司负责大数据平台(CDH平台)的运维管理,最常遇见的问题我总结出来,并且继续在下面更新。希望方便自己以后trouble shooting以及方便各位同行解决问题与学习。 关于做运维有几个重要的要点一定一定要遵守的: 遇到问题冷静,冷静,冷静,就山崩都要冷静,心态关乎你是否能将问题解决同时不会给人留下不好的印象。 凡是关于对集群更改与变动的操作,一定要在测试环境测试到没问…- 0
- 0
- 75
-
大数据- 自定义Log4j日记
1.新建一个java project,在src下新建一个lib文件夹和 rescources 文件夹,resources文件夹不能命名错误。 点击File——》project Structure...打开根据下图操作 把相关jar包放进lib文件夹里并绑定。 新建一个java文件 Log4jTest.java 和 HadoopLog4j.java 1 2 3 4 5 6…- 0
- 0
- 33
-
Spark- 性能优化
由于Spark 的计算本质是基于内存的,所以Spark的性能城西的性能可能因为集群中的任何因素出现瓶颈:CPU、网络带宽、或者是内存。如果内存能够容得下所有的数据,那么网络传输和通信就会导致性能出现频惊。但是如果内存比较紧张,不足以放下所有的数据(比如在针对10亿以上的数据量进行计算时),还是需要对内存的使用进行性能优化的,比如说使用一些手段来减少内存的消耗。 Spark性能优化,其…- 0
- 0
- 58
-
Hive- Hive 按时间定期插入分区表
写个shell脚本Hive 按时间定期插入分区表,由于今天统计的是昨天的数据所以日期减一。 #!/bin/bash DT=`date -d '-1 day' "+%Y-%m-%d"` #如果某天的数据有误需要重跑 if [ $1 ];then DT=$1 fi SQL=" insert overwrite table t…- 0
- 0
- 30
-
DataWarehouse- 从面试定位自己的水平
1.讲一下什么是维度表和事实表。用户资料表算是什么类型表。 2. 维度建模属于第几范式,让你对维度建模改进,有什么思路吗。 3. 了解数据血缘分析吗,让你实现的话有什么技术方案,感觉难点在哪。 4. 了解数据分层吗,讲一下分四层或者五层各有什么优劣。自己摸你一个场景,给出不同的方案。 5. 数据口径不一致的问题一般在什么情况下会发生,怎么避免。- 0
- 0
- 40
-
Spark- 根据ip地址计算归属地
主要考察的是广播变量的使用: 1、将要广播的数据 IP 规则数据存放在HDFS上,(广播出去的内容一旦广播出去产就不能改变了,如果需要实时改变的规则,可以将规则放到Redis中) 2、在Spark中转成RDD,然后收集到Driver端, 3、把 IP 规则数据广播到Executor中。Driver端广播变量的引用是怎样跑到 Executor中的呢? Task在Driver端生成的,…- 0
- 0
- 117
-
Spark-Spark setMaster & WordCount Demo
Spark setMaster源码 /** * The master URL to connect to, such as "local" to run locally with one thread, "local[4]" to * run locally with 4 cores, or "spark://master:7077&…- 0
- 0
- 76
-
spark- PySparkSQL之PySpark解析Json集合数据
PySparkSQL之PySpark解析Json集合数据 数据样本 12341234123412342|asefr-3423|[{"name":"spark","score":"65"},{"name":"airlow","score":&quo…- 0
- 0
- 52
-
Scala- Double类型工具类
格式化分数,按照指定小数位四舍五入工具类 package com.rz.util object NumberUtils { /** * 格式化小数 * @param num Double对象 * @param scale 四舍五入的位数 * @return 格式化后的小数 */ def formatDouble(num: Double, scale: Int)={ val decim…- 0
- 0
- 41
-
Spark- 共享变量
Shared Variables Normally, when a function passed to a Spark operation (such as map or reduce) is executed on a remote cluster node, it works on separate copies of all the variables used in the…- 0
- 0
- 63
-
Springboot- pagehelper使用
1.添加pagehelper依赖 <dependency> <groupId>org.github.pagehelper</groupId> <artifactId>pagehelper-spring-boot-starter</artifactId> <version>1.3.2</version>…- 0
- 0
- 49
-
可视化数据库管理平台:DBeaver 7.0.3
DBeaver 是一个可视化通用的数据库管理工具和 SQL 客户端,支持 MySQL, PostgreSQL, Oracle, DB2, MSSQL, Sybase, Mimer, HSQLDB, Derby, 以及其他兼容 JDBC 的数据库。 DBeaver 提供一个图形界面用来查看数据库结构、执行 SQL 查询和脚本,浏览和导出数据,处理 BLOB/CLOB 数据,修改数据库结构等等。 …- 0
- 0
- 113
-
Hive- Hive Web Interface
当我们安装好hive时候,我们启动hive的UI界面的时候,命令: hive –-service hwi ,报错,没有war包 我们查看hive/conf/hive-default.xml.template,查找hwi 把这3台属性复制,添加到hive-site.xml里面, vim hive-site.xml <property> <name>hive.hw…- 0
- 0
- 87
-
Python- and & or 的短路原则
条件1 and 条件2 条件1 or 条件2 短路原则 对于and 如果前面的第一个条件为假,那么这个and前后两个条件组成的表达式的计算结果就一定为假,第二个条件就不会被计算 对于or 如果前面的第一个条件为真,那么这个or前后两个条件组成的表达式的计算结果就一定为真,第二个条件就不会被计算- 0
- 0
- 73
-
Hadoop- Hadoop详解
首先所有知识以官网为准,所有的内容在官网上都有展示,所有的变动与改进,新增内容都以官网为准。hadoop.apache.org Hadoop是一个开源的可拓展的分布式并行处理计算平台,利用服务器集群根据用户的自定义业务逻辑,对海量数据进行分布式处理。Hadoop提供了一个可靠的共享存储和分析系统,Hadoop的核心三大组件有HDFS(分布式文件系统),MapReduce(分布式运算编程框架),YA…- 0
- 0
- 122
-
Spark- SparkStreaming可更新状态的实例
Producer package zx.zx.sparkkafka import java.util.Properties import kafka.producer.{KeyedMessage, Producer, ProducerConfig} import scala.util.Random /** * Created by 166 on 2017/9/6. */ object…- 0
- 0
- 69
-
Hadoop- MapReduce分布式计算框架原理
分布式计算:原则:移动计算而尽可能减少移动数据(减少网络开销)分布式计算其实就是将单台机器上的计算拓展到多台机器上并行计算。 MapReduce是一种编程模型。Hadoop MapReduce采用Master/slave 结构。只要按照其编程规范,只需要编写少量的业务逻辑代码即可实现一个强大的海量数据并发处理程序。核心思想是:分而治之。Mapper负责分,把一个复杂的业务,任…- 0
- 0
- 62
-
CDH- cdh kafka已经卸载了,但是服务器还有kafka-topics这些命令可用,导致重新安装kafka出现问题
CDH- cdh kafka已经卸载了,但是服务器还有kafka-topics这些命令可用,导致重新安装kafka出现问题 cdh界面删除并不会将 kafka数据删除,需要将kafka集群节点 var/local/kafka/data 清理掉 然后将zk brokers/topics 下的topic也清理掉- 0
- 0
- 32
-
Hadoop- Hadoop运维小计
如果是新添加一个节点,需要执行以下步骤: 首先,把新节点的 IP或主机名 加入主节点(master)的 conf/slaves 文件。 然后登录新的从节点,执行以下命令: $ cd Hadoop_path $ bin/hadoop-daemon.sh start datanode $ bin/hadoop-daemon.sh start tasktracker 然后就可…- 0
- 0
- 37
-
Spark- 流量日志分析
日志生成 package zx.Utils import java.io.{File, FileWriter} import java.util.Calendar import org.apache.commons.lang.time.{DateUtils, FastDateFormat} import scala.collection.mutable.ArrayBuffer imp…- 0
- 0
- 65
-
Apache Kudu 1.10.0 发布,Hadoop 生态数据存储系统
Apache Kudu 1.10.0 发布了,Kudu 是一个支持结构化数据的开源存储引擎,具有低延迟随机读取与高效分析读取模式。它基于 Apache Hadoop 生态系设计,并支持与 Apache 软件基金会其它数据分析项目集成。 此版本带来的新特性包括: Kudu 现在通过使用 Apache Spark 实现的作业支持完整和增量表备份。此外,它还支持通过使用 Apache Spark 实现的…- 0
- 0
- 99