RDD的算子分为两类,是 Trans formation(Lazy),一类是 Action(触发任务执行
RDD不存在真正要计算的数据,而是记录了RDD的转换关系(调用了什么方法,传入什么函数)
RDD的 Trans formation的特点
1. lazy
2.生成新的RDD
package cn.rzlee.spark.core
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
object TransformationOperation {
def main(args: Array[String]): Unit = {
//map()
//filter()
//flatMap()
// groupByKey()
//reduceByKey()
//sortByKey()
join()
}
// 将集合中每个元素乘以2
def map(){
val conf = new SparkConf().setAppName(this.getClass.getSimpleName).setMaster("local[1]")
val sc = new SparkContext(conf)
val numbers = Array(1,2,3,4,5)
val numberRDD: RDD[Int] = sc.parallelize(numbers,1)
numberRDD.foreach(num=>println(num))
}
// 过滤出集合中的偶数
def filter(): Unit ={
val conf = new SparkConf().setAppName(this.getClass.getSimpleName).setMaster("local[1]")
val sc = new SparkContext(conf)
val numbers = Array(1,2,3,4,5)
val numberRDD: RDD[Int] = sc.parallelize(numbers,1)
val evenNumbersRdd = numberRDD.filter(num=>num%2==0)
evenNumbersRdd.foreach(num=>println(num))
}
// 将行拆分为单词
def flatMap(): Unit ={
val conf = new SparkConf().setAppName(this.getClass.getSimpleName).setMaster("local[1]")
val sc = new SparkContext(conf)
val lineArray = Array("hello you", "just do it", "go go go")
val lines = sc.parallelize(lineArray, 1)
val words: RDD[String] = lines.flatMap(line=>line.split(" "))
words.foreach(word=>println(word))
}
// 将每个班级的成绩进行分组
def groupByKey(): Unit ={
val conf = new SparkConf().setAppName(this.getClass.getSimpleName).setMaster("local[1]")
val sc = new SparkContext(conf)
val scoresList = Array(Tuple2("class1", 50), Tuple2("class1", 95), Tuple2("class2", 60), Tuple2("class2", 88))
val scores: RDD[(String, Int)] = sc.parallelize(scoresList, 1)
val groupedScoreds = scores.groupByKey()
groupedScoreds.foreach(scored=>{
println(scored._1)
scored._2.foreach(singleScore=>println(singleScore))
println("=====================================")
})
}
// 统计每个班级的总分
def reduceByKey(): Unit ={
val conf = new SparkConf().setAppName(this.getClass.getSimpleName).setMaster("local[1]")
val sc = new SparkContext(conf)
val scoresList = Array(Tuple2("class1", 50), Tuple2("class1", 95), Tuple2("class2", 60), Tuple2("class2", 88))
val scores: RDD[(String, Int)] = sc.parallelize(scoresList, 1)
val totalScores: RDD[(String, Int)] = scores.reduceByKey(_+_)
totalScores.foreach(totalScore=>println(totalScore._1 +" : " + totalScore._2))
}
//将学生分数进行排序
def sortByKey(): Unit ={
val conf = new SparkConf().setAppName(this.getClass.getSimpleName).setMaster("local[1]")
val sc = new SparkContext(conf)
val scoreList = Array(Tuple2(90,"leo"), Tuple2(99, "kent"), Tuple2(80,"Jeo"), Tuple2(91,"Ben"), Tuple2(96,"Sam"))
val scores: RDD[( Int,String)] = sc.parallelize(scoreList, 1)
val sortedScores = scores.sortByKey(false)
sortedScores.foreach(student=>println(student._2 +" : " + student._1))
}
// 打印每个学生的成绩
def join(): Unit ={
val conf = new SparkConf().setAppName(this.getClass.getSimpleName).setMaster("local[1]")
val sc = new SparkContext(conf)
val studentsList = Array(Tuple2(1,"leo"), Tuple2(2, "Sam"), Tuple2(3, "kevin"))
val scoresList = Array(Tuple2(1,60), Tuple2(2,70), Tuple2(3,80))
val students: RDD[(Int, String)] = sc.parallelize(studentsList,1)
val scores: RDD[(Int, Int)] = sc.parallelize(scoresList,1)
val studentScores: RDD[(Int, (String, Int))] = students.join(scores)
studentScores.foreach(studentScore=>{
println("studentid: "+studentScore._1)
println("studentNmae:"+studentScore._2._1)
println("studentScore: "+ studentScore._2._2)
println("###################################################")
})
}
// 打印每个学生的成绩
// cogroup相当于full join
def cogroup(): Unit ={
val conf = new SparkConf().setAppName(this.getClass.getSimpleName).setMaster("local[1]")
val sc = new SparkContext(conf)
val studentsList = Array(Tuple2(1,"leo"), Tuple2(2, "Sam"), Tuple2(3, "kevin"))
val scoresList = Array(Tuple2(1,60), Tuple2(2,70), Tuple2(3,80))
val students: RDD[(Int, String)] = sc.parallelize(studentsList,1)
val scores: RDD[(Int, Int)] = sc.parallelize(scoresList,1)
val studentScores: RDD[(Int, (Iterable[String], Iterable[Int]))] = students.cogroup(scores)
studentScores.foreach(studentScore =>{
println("studentid: " + studentScore._1)
println("studentname: "+ studentScore._2._1)
println("studentscore: "+ studentScore._2._2)
})
}
#union求并集,注意类型要一致
|
1
2
3
4
|
val rdd6 = sc.parallelize(List(5,6,4,7))val rdd7 = sc.parallelize(List(1,2,3,4))val rdd8 = rdd6.union(rdd7)rdd8.distinct.sortBy(x=>x).collect |
#intersection求交集
|
1
|
val rdd9 = rdd6.intersection(rdd7) |
#join(连接) 注意按照key相join
|
1
2
3
4
5
6
7
|
val rdd1 = sc.parallelize(List(("tom", 1), ("jerry", 2), ("kitty", 3)))val rdd2 = sc.parallelize(List(("jerry", 9), ("tom", 8), ("shuke", 7), ("tom", 2)))val rdd3 = rdd1.join(rdd2)val rdd3 = rdd1.leftOuterJoin(rdd2)val rdd3 = rdd1.rightOuterJoin(rdd2) |
#cogroup 有点像全外连接
|
1
|
// cogroup |
val rdd1 = sc.parallelize(List((“tom”, 1), (“tom”, 2), (“jerry”, 3), (“kitty”, 2)))
val rdd2 = sc.parallelize(List((“jerry”, 2), (“tom”, 1), (“shuke”, 2)))
val rdd3 = rdd1.cogroup(rdd2)
println(rdd3.collect().toBuffer)
#cartesian笛卡尔积
|
1
2
3
|
val rdd1 = sc.parallelize(List("tom", "jerry"))val rdd2 = sc.parallelize(List("tom", "kitty", "shuke"))val rdd3 = rdd1.cartesian(rdd2) |


















