-
Spark- 求最受欢迎的TopN课程
数据库操作工具类 package com.rz.mobile_tag.utils import java.sql.{Connection, DriverManager, PreparedStatement} object MySQLUtils { /** * 获取数据库连接 * @return */ def getConnection()={ DriverManager.getCon…- 0
- 0
- 71
-
Hive- Hive 的基本操作
创建数据库 create database db_hive; use db_hive; create database if not exists db_hive_02; create database if not exists db_hive_01 location '/user/rz_lee/warehouse/db_hive_01.db'; //指定数据库…- 0
- 0
- 69
-
Spark- Spark基本工作原理
Spark特点: 1.分布式 spark读取数据时是把数据分布式存储到各个节点内存中 2.主要基于内存(少数情况基于磁盘,如shuffle阶段) 所有计算操作,都是针对多个节点上内存的数据,进行并行操作的 3.迭代式计算 对分布式节点内存中的数据进行处理,处理后的数据可能会移动到其他节点的内存中,当需要用到某些数据时,从这些节点的内存中就能找到,迭代出来使用 Spark与MapRed…- 0
- 0
- 69
-
Spark- SparkStreaming可更新状态的实例
Producer package zx.zx.sparkkafka import java.util.Properties import kafka.producer.{KeyedMessage, Producer, ProducerConfig} import scala.util.Random /** * Created by 166 on 2017/9/6. */ object…- 0
- 0
- 69
-
Spark- 流量日志分析
日志生成 package zx.Utils import java.io.{File, FileWriter} import java.util.Calendar import org.apache.commons.lang.time.{DateUtils, FastDateFormat} import scala.collection.mutable.ArrayBuffer imp…- 0
- 0
- 65
-
Hadoop- Wordcount程序原理及代码实现
如果对Hadoop- MapReduce分布式计算框架原理还不熟悉的可以先了解一下它,因为本文的wordcount程序实现就是MapReduce分而治之最经典的一个范例。 单词计数(wordcount)主要步骤: 1.读数据 2.按行处理 3.按空格切分行内单词 4.HashMap(单词,value+1) 等分给自己的数据片全部读取完之后 5.将HashMap按照首字母范围分为3个H…- 0
- 0
- 64
-
Spark- 共享变量
Shared Variables Normally, when a function passed to a Spark operation (such as map or reduce) is executed on a remote cluster node, it works on separate copies of all the variables used in the…- 0
- 0
- 63
-
Hadoop- MapReduce分布式计算框架原理
分布式计算:原则:移动计算而尽可能减少移动数据(减少网络开销)分布式计算其实就是将单台机器上的计算拓展到多台机器上并行计算。 MapReduce是一种编程模型。Hadoop MapReduce采用Master/slave 结构。只要按照其编程规范,只需要编写少量的业务逻辑代码即可实现一个强大的海量数据并发处理程序。核心思想是:分而治之。Mapper负责分,把一个复杂的业务,任…- 0
- 0
- 62
-
Storm- 使用Storm实现累积求和的操作
需求:1+2+3+... = ??? 实现方案: Spout发出数字作为input 使用Bolt来处理业务逻辑:求和 将结果输出到控制台 拓扑设计:DataSourceSpout -->SumBolt→输出 package com.imooc.bigdata; import org.apache.storm.Config; import org.apache.st…- 0
- 0
- 61
-
Spark- Checkpoint原理剖析
Checkpoint,是Spark 提供的一个比较高级的功能。有的时候,比如说,我们的 Spark 应用程序,特别的复杂,然后从初始的RDD开始,到最后拯个应用程序完成,有非常多的步骤,比如超过20个transformation 操作。而且整个应用运行的时间也特别的长,比如通常要运行1-5小时。 在上述的情况下,就比较适合使用checkpoint 功能。因为,对于特别复杂的 Spar…- 0
- 0
- 61
-
Openldap- 大集群身份验证服务
无论在哪个行业,数据安全永远都是摆在首要地位。尤其是在大数据行业上,谁掌握了数据,谁就有可能成为下个亿万富豪的环境中,数据安全更为重要。大数据的安全可以从哪些地方入手,首先可以在身份验证上面入手。在大数据的集群设备上做好身份验证,可以使用openldap来做。 唯有通过openldap管理的账号才能对大数据系统进行访问,没有通过openldap创建的账号是不能login到Hadoop…- 0
- 0
- 60
-
Spark- Spark Yarn模式下跑yarn-client无法初始化SparkConext,Over usage of virtual memory
在spark yarn模式下跑yarn-client时出现无法初始化SparkContext错误. 17/09/27 16:17:54 INFO mapreduce.Job: Task Id : attempt_1428293579539_0001_m_000003_0, Status : FAILED Container [pid=7847,containerID=containe…- 0
- 0
- 60
-
Hadoop- MapReduce在实际应用中常见的调优
1、Reduce Task Number 通常来说一个block就对应一个map任务进行处理,reduce任务如果人工不去设置干预的话就一个reduce。reduce任务的个数可以通过在程序中设置 job.setNumReduceTasks(个数); ,也可在配置文件上设置reduce任务个数,默认为1, 或者在代码config中配置 Configuration configura…- 0
- 0
- 60
-
CapitalOne 和 GitHub 因数据泄露事件遭遇集体诉讼
来自 thehill 的消息:CapitalOne 和 GitHub 因近期的数据泄露事件而遭遇集体诉讼,事件导致 CapitalOne 泄露超过 1 亿条客户数据。 Tycko&Zavareei LLP 律师事务所周四提起诉讼,辩称 GitHub 和 CapitalOne 在对违规行为的回应中表现出疏忽。该公司代表受违规行为影响的人提起集体诉讼,指控两家公司未能保护客户数据。 在 Capital…- 0
- 0
- 59
-
Storm- 使用Storm实现词频汇总
需求:读取指定目录的数据,并实现单词计数的功能 实现方案: Spout来读取指定目录的数据,作为后续Bolt处理的input 使用一个Bolt把input 的数据,切割分开,我们按照逗号进分割 使用一个Bolt来进行最终的单词次数统计操作并输出 拓扑设计:DataSourceSpout ==>SpiltBolt ==>CountBolt Storm编程注意,…- 0
- 0
- 59
-
Spark- Linux下安装Spark
Spark- Linux下安装Spark 前期部署 1.JDK安装,配置PATH 可以参考之前配置hadoop等配置 2.下载spark-1.6.1-bin-hadoop2.6.tgz,并上传到服务器解压 [root@srv01 ~]# tar -xvzf spark-1.6.1-hadoop2.6.tgz /usr/spark-1.6.1-hadoop2.6 3.在 /usr 下…- 0
- 0
- 59
-
Spark- 性能优化
由于Spark 的计算本质是基于内存的,所以Spark的性能城西的性能可能因为集群中的任何因素出现瓶颈:CPU、网络带宽、或者是内存。如果内存能够容得下所有的数据,那么网络传输和通信就会导致性能出现频惊。但是如果内存比较紧张,不足以放下所有的数据(比如在针对10亿以上的数据量进行计算时),还是需要对内存的使用进行性能优化的,比如说使用一些手段来减少内存的消耗。 Spark性能优化,其…- 0
- 0
- 58
-
Spark- 计算每个学科最受欢迎的老师
日志类型 测试数据 http://bigdata.myit.com/zhangsan http://bigdata.myit.com/zhangsan http://bigdata.myit.com/zhangsan http://bigdata.myit.com/zhangsan http://bigdata.myit.com/zhangsan http://java.myit.c…- 0
- 0
- 58
-
Python- 贪婪与非贪婪
python运行匹配时,如果没有人为限定,默认是贪婪模式。 import re a = 'python 22222java34bigdata' r = re.findall('[a-z]{3}',a) # 打印三个字符 rr = re.findall('[a-z]{3,6}',a) # 匹配到的长度最小为3,最长不能超过 r…- 0
- 0
- 57
-
Storm- Storm作业提交运行流程
用户编写Storm Topology 使用client提交Topology给Nimbus Nimbus指派Task给Supervisor Supervisor为Task启动Worker Worker执行Task- 0
- 0
- 56
-
Spark- RDD持久化
官方原文: RDD Persistence One of the most important capabilities in Spark is persisting (or caching) a dataset in memory across operations. When you persist an RDD, each node stores any partitions …- 0
- 0
- 56
-
-
Spark- Transformation实战
RDD的算子分为两类,是 Trans formation(Lazy),一类是 Action(触发任务执行 RDD不存在真正要计算的数据,而是记录了RDD的转换关系(调用了什么方法,传入什么函数) RDD的 Trans formation的特点 1. lazy 2.生成新的RDD package cn.rzlee.spark.core import org.…- 0
- 0
- 55
-
Spark- RDD简介
Spark里面提供了一个比较重要的抽象——弹性分布式数据集(resilient distributed dataset),简称RDD。弹性:数据可大可小,可分布在内存或磁盘,当某台机器宕机时,能够按照RDD的liveage重新计算,从而恢复。 RDD有5个特性: 1.一个分区列表,用于并行计算,每个分区对应一个原子数据集,作为这个分区的数据输入 2.计算这个RDD某个分区数据(这个分…- 0
- 0
- 54
-
Hive- Hive安装
Hive安装 1.1下载Hive安装包 官网:http://hive.apache.org/downloads.html 个人建议到这里下载:http://apache.forsale.plus/ 1.2将hive文件上传到HADOOP集群,并解压 将文件上传到 /usr ,解压 tar -zxvf apache-hive-1.2.1-bin.tar.gz -C /usr/ 重命名:…- 0
- 0
- 53
-
Spark- Spark内核架构原理和Spark架构深度剖析
Spark内核架构原理 1.Driver 选spark节点之一,提交我们编写的spark程序,开启一个Driver进程,执行我们的Application应用程序,也就是我们自己编写的代码。Driver会根据我们对RDD定义的操作,提交一大堆的task去Executor上。Driver注册了一些Executor之后,就可以开始正式执行我们的Spark应用程序了,首先第一步,创建初始RD…- 0
- 0
- 53
-
Hadoop- Hadoop环境搭建
Windows下Hadoop的安装 准备工具:64位的JDK,Hadoop安装包(我使用的是2.6.1) JDK下载地址 官网: http://www.oracle.com/technetwork/java/javase/downloads/index.html Hadoop下载地址 官网:http://hadoop.apache.org/ 1.安装JDK环境,配置系统环境变量. 选…- 0
- 0
- 53
-
JAVA- 数据库连接池原理
第一次Java程序要在MySQL中执行一条语句,那么就必须建立一个Connection对象,代表了与MySQL数据库的连接通过直接发送你要执行的SQL语句之后,就会调用Connection.close()来关闭和销毁与数据库的连接。为什么要立即关闭呢?因为数据库的连接是一种很重的资源,代表了网络连接、IO等资源。所以如果不是用的话就需要尽早关闭,以避免资源浪费。 JDBC的劣势与不足…- 0
- 0
- 53
-
Spark- 自定义排序
考察spark自定义排序 方式一:自定义一个类继承Ordered和序列化,Driver端将数据变成RDD,整理数据转成自定义类类型的RDD,使用本身排序即可。 package com.rz.spark.base import org.apache.spark.rdd.RDD import org.apache.spark.{SparkConf, SparkContext} // 自定…- 0
- 0
- 53
-
spark- PySparkSQL之PySpark解析Json集合数据
PySparkSQL之PySpark解析Json集合数据 数据样本 12341234123412342|asefr-3423|[{"name":"spark","score":"65"},{"name":"airlow","score":&quo…- 0
- 0
- 52
-
Hadoop- 流量汇总程序之如何实现hadoop的序列化接口及代码实现
流量汇总程序需求 统计每一个用户(手机号)锁耗费的总上行流量、下行流量、总流量。 流程剖析 阶段:map 读取一行数据,切分字段, 抽取手机号,上行流量,下行流量 context.write(手机号,bean) 阶段:reduce 汇总遍历每个bean,将其中的上行流量,下行流量分别累加,得到一个新的bean context.write(手机号,新bean); 代码实现…- 0
- 0
- 51
-
CDH- 集群时间同步ntp问题解决
在CDH集群中发现有两台机器获取不到心跳(),导致监控不了机器状态,出现告警 可以使用ntpstat检查与ntp 服务器的时间偏差状态 使用 ntpstat 发现没有同步到ntp时间服务器,运行 ntpdate ip 添加时间同步服务器出现报错 the NTP socket is in use, exiting 网上搜了一下,大部分的建议是…- 0
- 0
- 50
-
大数据之路- Hadoop环境搭建(Linux)
前期部署 1.JDK 2.上传HADOOP安装包 2.1官网:http://hadoop.apache.org/ 2.2下载hadoop-2.6.1的这个tar.gz文件,官网: https://archive.apache.org/dist/hadoop/common/hadoop-2.6.1/ 下载成功后,把这个tar.gz包上传到服务器上,命令: 通…- 0
- 0
- 49
-
Springboot- pagehelper使用
1.添加pagehelper依赖 <dependency> <groupId>org.github.pagehelper</groupId> <artifactId>pagehelper-spring-boot-starter</artifactId> <version>1.3.2</version>…- 0
- 0
- 49
-
Spark- 常见问题
记录spark使用中常见问题 SparkSQL 日期解析时用到SimpleDateFormat, SimpleDateFormat是线程不安全的。可以使用 FastDateFormat 如: import org.apache.commons.lang3.time.FastDateFormat // 输入文件日期时间格式 // [10/Nov/2018:00:01:02 +0800]…- 0
- 0
- 49