-
Hadoop- HDFS的API操作
1、引入依赖 <dependency> <groupId>org.apache.hadoop</groupId> <artifactId>hadoop-client</artifactId> <version>2.6.1</version> </dependency> 注:如需手动引入ja…- 0
- 0
- 118
-
Spark- Spark从SFTP中读取zip压缩文件数据做计算
我们遇到个特别的需求,一个数据接入的流程跑的太慢,需要升级为用大数据方式去处理,提高效率。 数据: 数据csv文件用Zip 压缩后放置在SFTP中 数据来源: SFTP 数据操作: 文件和它的压缩包一致,后缀不同。文件名中包含渠道、日期、操作标记("S"追加,"N"全量,"D"删除) 升级前的操作方式: she…- 0
- 0
- 112
-
Hive- Hive Web Interface
当我们安装好hive时候,我们启动hive的UI界面的时候,命令: hive –-service hwi ,报错,没有war包 我们查看hive/conf/hive-default.xml.template,查找hwi 把这3台属性复制,添加到hive-site.xml里面, vim hive-site.xml <property> <name>hive.hw…- 0
- 0
- 101
-
Spark- JdbcRDD以及注意事项
先上Demo package com.rz.spark.base import java.sql.DriverManager import org.apache.spark.rdd.JdbcRDD import org.apache.spark.{SparkConf, SparkContext} object JdbcRDDDemo { def main(args: Array[St…- 0
- 0
- 41
-
Kafka- Kafka架构功能
Kafka是一个高吞吐量的分布式消息系统,一个分布式的发布-订阅消息系统。Kafka是一种快速,可拓展的,设计内在就是分布式的,分区的可复制的提交日志服务。 Apache Kafka与传统消息系统相比,有以下不同: 它设计为一个分布式系统,易于向外拓展; 它同时为发布和订阅提供高吞吐量; 它支持多订阅者,当失败时能自动平衡消费者; 它将消息持久化到磁盘,因此可用于批量消费,例如ETL…- 0
- 0
- 44
-
Spark- 计算每个学科最受欢迎的老师
日志类型 测试数据 http://bigdata.myit.com/zhangsan http://bigdata.myit.com/zhangsan http://bigdata.myit.com/zhangsan http://bigdata.myit.com/zhangsan http://bigdata.myit.com/zhangsan http://java.myit.c…- 0
- 0
- 74
-
可视化数据库管理平台:DBeaver 7.0.3
DBeaver 是一个可视化通用的数据库管理工具和 SQL 客户端,支持 MySQL, PostgreSQL, Oracle, DB2, MSSQL, Sybase, Mimer, HSQLDB, Derby, 以及其他兼容 JDBC 的数据库。 DBeaver 提供一个图形界面用来查看数据库结构、执行 SQL 查询和脚本,浏览和导出数据,处理 BLOB/CLOB 数据,修改数据库结构等等。 …- 0
- 0
- 133
-
Spark- RDD持久化
官方原文: RDD Persistence One of the most important capabilities in Spark is persisting (or caching) a dataset in memory across operations. When you persist an RDD, each node stores any partitions …- 0
- 0
- 76
-
CDH- 集群时间同步ntp问题解决
在CDH集群中发现有两台机器获取不到心跳(),导致监控不了机器状态,出现告警 可以使用ntpstat检查与ntp 服务器的时间偏差状态 使用 ntpstat 发现没有同步到ntp时间服务器,运行 ntpdate ip 添加时间同步服务器出现报错 the NTP socket is in use, exiting 网上搜了一下,大部分的建议是…- 0
- 0
- 61
-
Sqooop- 使用Sqoop进行数据的导入导出
Sqoop是Apache旗下的一个开源框架,专门用来做数据的导入和导出。 官网:https://sqoop.apache.org/ Sqoop的安装非常简单,只需要把下载下来的tar包解压设置两个环境变量就可以了 1.安装部署 下载版本:sqoop-1.4.6.bin__hadoop-2.0.4-alpha.tar.gz 官网:http://mirror.bit.edu.cn/apa…- 0
- 0
- 135
-
Storm- 使用Storm实现词频汇总
需求:读取指定目录的数据,并实现单词计数的功能 实现方案: Spout来读取指定目录的数据,作为后续Bolt处理的input 使用一个Bolt把input 的数据,切割分开,我们按照逗号进分割 使用一个Bolt来进行最终的单词次数统计操作并输出 拓扑设计:DataSourceSpout ==>SpiltBolt ==>CountBolt Storm编程注意,…- 0
- 0
- 70
-
spark- PySparkSQL之PySpark解析Json集合数据
PySparkSQL之PySpark解析Json集合数据 数据样本 12341234123412342|asefr-3423|[{"name":"spark","score":"65"},{"name":"airlow","score":&quo…- 0
- 0
- 63
-
Spark- 求最受欢迎的TopN课程
数据库操作工具类 package com.rz.mobile_tag.utils import java.sql.{Connection, DriverManager, PreparedStatement} object MySQLUtils { /** * 获取数据库连接 * @return */ def getConnection()={ DriverManager.getCon…- 0
- 0
- 90
-
Hbase- Hbase客户端读写数据时的路由流程
1、客户端先到zookeeper查找hbase:meta所在的RegionServer服务器 2、去hbase:meta表查找自己所要的数据所在的region server 3、去目标region server上的region要自己的数据 可以看出客户端查找数据可以不经过master- 0
- 0
- 49
-
Spark- SparkStreaming可更新状态的实例
Producer package zx.zx.sparkkafka import java.util.Properties import kafka.producer.{KeyedMessage, Producer, ProducerConfig} import scala.util.Random /** * Created by 166 on 2017/9/6. */ object…- 0
- 0
- 86
-
Storm- Storm作业提交运行流程
用户编写Storm Topology 使用client提交Topology给Nimbus Nimbus指派Task给Supervisor Supervisor为Task启动Worker Worker执行Task- 0
- 0
- 71
-
Hadoop- 集群时间同步
集群的时间要同步 * 找一台机器 时间服务器 * 所有的机器与这台机器时间进行定时的同步 比如,每日十分钟,同步一次时间 # rpm -qa|grep ntp # vi /etc/ntp.conf # vi /etc/sysconfig/ntpd # Drop root to id 'ntp:ntp' by default. SYNC_HWCLOCK=yes OP…- 0
- 0
- 56
-
Kafka- Spark消费Kafka
在高版本的API中 val brokers = properties.getProperty("kafka.host.list") val topics = Set(properties.getProperty("kafka.application.topic")) val kafkaParams = Map[String, String]( …- 0
- 0
- 54
-
大数据- 自定义Log4j日记
1.新建一个java project,在src下新建一个lib文件夹和 rescources 文件夹,resources文件夹不能命名错误。 点击File——》project Structure...打开根据下图操作 把相关jar包放进lib文件夹里并绑定。 新建一个java文件 Log4jTest.java 和 HadoopLog4j.java 1 2 3 4 5 6…- 0
- 0
- 44
-
Hadoop- MR的shuffle过程
step1 input InputFormat读取数据,将数据转换成<key ,value>对,设置FileInputFormat,默认是文本格式(TextInputFormat) step2 map map<KEYIN, VALUEIN, KEYOUT, VALUEOUT> 默认情况下KEYIN:LongWritable,偏移量。VALUEIN:Text,K…- 0
- 0
- 45
-
Python- NumPy
NumPy包括的内容 NumPy系统是 Python的一种开源的数值计算扩展,是一个用 python实现的科学计算包。包括: 一个具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组,称为 ndarray(N-dimensional array object ) 用于对整组数据进行快速运算的标准数学函数, func( universal function object) 用于整…- 0
- 0
- 160
-
Spark- 使用hiveContext时提交作业报错
在spark上操作hive时不需要搭建hive环境,只需要从现有的hive集群中hive的conf目录下拷贝 hive-site.xml 到spark的conf目录下即可提交程序运行 出现报错 Caused by: org.datanucleus.exceptions.NucleusException: Attempt to invoke the "BONEC…- 0
- 0
- 49
-
Spark- Spark内核架构原理和Spark架构深度剖析
Spark内核架构原理 1.Driver 选spark节点之一,提交我们编写的spark程序,开启一个Driver进程,执行我们的Application应用程序,也就是我们自己编写的代码。Driver会根据我们对RDD定义的操作,提交一大堆的task去Executor上。Driver注册了一些Executor之后,就可以开始正式执行我们的Spark应用程序了,首先第一步,创建初始RD…- 0
- 0
- 62
-
Hadoop- 流量汇总程序之如何实现hadoop的序列化接口及代码实现
流量汇总程序需求 统计每一个用户(手机号)锁耗费的总上行流量、下行流量、总流量。 流程剖析 阶段:map 读取一行数据,切分字段, 抽取手机号,上行流量,下行流量 context.write(手机号,bean) 阶段:reduce 汇总遍历每个bean,将其中的上行流量,下行流量分别累加,得到一个新的bean context.write(手机号,新bean); 代码实现…- 0
- 0
- 70
-
Linux- AWS之EC2大数据集群定时开关机
众所周知,云计算就是在计算你的钱,每当ec2开起来就要开始计费。当用户购买了一个庞大的与服务器做一个集群,尤其是用来做大数据集群,这些服务器的配置相当高,每台服务器所需要的费用不菲。其实在很多时候没能够完全利用起其全部的资源,尤其在空闲时间,在夜间没有作业的情况下,这些服务器完全处于空闲的状态,却时刻在计费,这是相当不划算的。于是有这样一个方案,我们是不是可以在机器处于空闲的状态时将…- 0
- 0
- 113
-
数据仓库- 建模理念
数仓建模的目标 访问性能:能够快速查询所需的数据,减少数据I/O 数据成本:减少不必要的数据冗余,实现计算结果数据复用,降低大数据系统中的存储成本和计算成本。 使用效率:改善用户使用体验,提高使用数据的效率 数据质量:改善数据统计口径的不一致性,减少数据计算错误的可性,提供高质量的、一致的数据访问平台 大数据的数仓建模需要通过建模的方法更好的组织、存储数据、以便在性能、…- 0
- 0
- 55
-
HIVE- 新建UDF范例
首先pom文件导入依赖,Hadoop和hive的依赖导入自己机器的版本,hive记得导jdbc <dependency> <groupId>org.apache.hadoop</groupId> <artifactId>hadoop-client</artifactId> <version>2.6.1</v…- 0
- 0
- 60
-
Spark- 自定义排序
考察spark自定义排序 方式一:自定义一个类继承Ordered和序列化,Driver端将数据变成RDD,整理数据转成自定义类类型的RDD,使用本身排序即可。 package com.rz.spark.base import org.apache.spark.rdd.RDD import org.apache.spark.{SparkConf, SparkContext} // 自定…- 0
- 0
- 77
-
CDH- cdh kafka已经卸载了,但是服务器还有kafka-topics这些命令可用,导致重新安装kafka出现问题
CDH- cdh kafka已经卸载了,但是服务器还有kafka-topics这些命令可用,导致重新安装kafka出现问题 cdh界面删除并不会将 kafka数据删除,需要将kafka集群节点 var/local/kafka/data 清理掉 然后将zk brokers/topics 下的topic也清理掉- 0
- 0
- 49
-
Hadoop- Hadoop运维小计
如果是新添加一个节点,需要执行以下步骤: 首先,把新节点的 IP或主机名 加入主节点(master)的 conf/slaves 文件。 然后登录新的从节点,执行以下命令: $ cd Hadoop_path $ bin/hadoop-daemon.sh start datanode $ bin/hadoop-daemon.sh start tasktracker 然后就可…- 0
- 0
- 53
-
Spark- ERROR Shell: Failed to locate the winutils binary in the hadoop binary path java.io.IOException: Could not locate executable null\bin\winutils.exe in the Hadoop binaries.
运行 mport org.apache.log4j.{Level, Logger} import org.apache.spark.rdd.RDD import org.apache.spark.{SparkConf, SparkContext} /** * Created by Lee_Rz on 2017/8/30. */ object SparkDemo { def main(args: A…- 0
- 0
- 132
-
Spark- Checkpoint原理剖析
Checkpoint,是Spark 提供的一个比较高级的功能。有的时候,比如说,我们的 Spark 应用程序,特别的复杂,然后从初始的RDD开始,到最后拯个应用程序完成,有非常多的步骤,比如超过20个transformation 操作。而且整个应用运行的时间也特别的长,比如通常要运行1-5小时。 在上述的情况下,就比较适合使用checkpoint 功能。因为,对于特别复杂的 Spar…- 0
- 0
- 72
-
Spark- 共享变量
Shared Variables Normally, when a function passed to a Spark operation (such as map or reduce) is executed on a remote cluster node, it works on separate copies of all the variables used in the…- 0
- 0
- 80
-
Storm- 使用Storm实现累积求和的操作
需求:1+2+3+... = ??? 实现方案: Spout发出数字作为input 使用Bolt来处理业务逻辑:求和 将结果输出到控制台 拓扑设计:DataSourceSpout -->SumBolt→输出 package com.imooc.bigdata; import org.apache.storm.Config; import org.apache.st…- 0
- 0
- 71
-
Spark- 性能优化
由于Spark 的计算本质是基于内存的,所以Spark的性能城西的性能可能因为集群中的任何因素出现瓶颈:CPU、网络带宽、或者是内存。如果内存能够容得下所有的数据,那么网络传输和通信就会导致性能出现频惊。但是如果内存比较紧张,不足以放下所有的数据(比如在针对10亿以上的数据量进行计算时),还是需要对内存的使用进行性能优化的,比如说使用一些手段来减少内存的消耗。 Spark性能优化,其…- 0
- 0
- 70