-
JAVA- 数据库连接池原理
第一次Java程序要在MySQL中执行一条语句,那么就必须建立一个Connection对象,代表了与MySQL数据库的连接通过直接发送你要执行的SQL语句之后,就会调用Connection.close()来关闭和销毁与数据库的连接。为什么要立即关闭呢?因为数据库的连接是一种很重的资源,代表了网络连接、IO等资源。所以如果不是用的话就需要尽早关闭,以避免资源浪费。 JDBC的劣势与不足…- 0
- 0
- 53
-
HIVE- 数据倾斜
数据倾斜就是由于数据分布不均匀,数据大量集中到一点上,造成数据热点。大多数情况下,分为一下三种情况: 1.map端执行比较快,reduce执行很慢,因为partition造成的数据倾斜。 2.某些reduce很快,某些reduce很慢,也是因为partition造成的数据倾斜。 3.某些map执行很快,某些map执行很慢,这是因为数据本身的分布的不合理性造成的。 造成上面reduce…- 0
- 0
- 44
-
Hadoop- MR的shuffle过程
step1 input InputFormat读取数据,将数据转换成<key ,value>对,设置FileInputFormat,默认是文本格式(TextInputFormat) step2 map map<KEYIN, VALUEIN, KEYOUT, VALUEOUT> 默认情况下KEYIN:LongWritable,偏移量。VALUEIN:Text,K…- 0
- 0
- 31
-
Hive- Hive 按时间定期插入分区表
写个shell脚本Hive 按时间定期插入分区表,由于今天统计的是昨天的数据所以日期减一。 #!/bin/bash DT=`date -d '-1 day' "+%Y-%m-%d"` #如果某天的数据有误需要重跑 if [ $1 ];then DT=$1 fi SQL=" insert overwrite table t…- 0
- 0
- 30
-
Python- and & or 的短路原则
条件1 and 条件2 条件1 or 条件2 短路原则 对于and 如果前面的第一个条件为假,那么这个and前后两个条件组成的表达式的计算结果就一定为假,第二个条件就不会被计算 对于or 如果前面的第一个条件为真,那么这个or前后两个条件组成的表达式的计算结果就一定为真,第二个条件就不会被计算- 0
- 0
- 73
-
Storm- Storm作业提交运行流程
用户编写Storm Topology 使用client提交Topology给Nimbus Nimbus指派Task给Supervisor Supervisor为Task启动Worker Worker执行Task- 0
- 0
- 56
-
Kafka- Kafka架构功能
Kafka是一个高吞吐量的分布式消息系统,一个分布式的发布-订阅消息系统。Kafka是一种快速,可拓展的,设计内在就是分布式的,分区的可复制的提交日志服务。 Apache Kafka与传统消息系统相比,有以下不同: 它设计为一个分布式系统,易于向外拓展; 它同时为发布和订阅提供高吞吐量; 它支持多订阅者,当失败时能自动平衡消费者; 它将消息持久化到磁盘,因此可用于批量消费,例如ETL…- 0
- 0
- 32
-
Spark- RDD简介
Spark里面提供了一个比较重要的抽象——弹性分布式数据集(resilient distributed dataset),简称RDD。弹性:数据可大可小,可分布在内存或磁盘,当某台机器宕机时,能够按照RDD的liveage重新计算,从而恢复。 RDD有5个特性: 1.一个分区列表,用于并行计算,每个分区对应一个原子数据集,作为这个分区的数据输入 2.计算这个RDD某个分区数据(这个分…- 0
- 0
- 54
-
Spark- SparkStreaming可更新状态的实例
Producer package zx.zx.sparkkafka import java.util.Properties import kafka.producer.{KeyedMessage, Producer, ProducerConfig} import scala.util.Random /** * Created by 166 on 2017/9/6. */ object…- 0
- 0
- 69
-
Spark- 计算每个学科最受欢迎的老师
日志类型 测试数据 http://bigdata.myit.com/zhangsan http://bigdata.myit.com/zhangsan http://bigdata.myit.com/zhangsan http://bigdata.myit.com/zhangsan http://bigdata.myit.com/zhangsan http://java.myit.c…- 0
- 0
- 58
-
Spark- 流量日志分析
日志生成 package zx.Utils import java.io.{File, FileWriter} import java.util.Calendar import org.apache.commons.lang.time.{DateUtils, FastDateFormat} import scala.collection.mutable.ArrayBuffer imp…- 0
- 0
- 65
-
Hadoop- Hadoop运维小计
如果是新添加一个节点,需要执行以下步骤: 首先,把新节点的 IP或主机名 加入主节点(master)的 conf/slaves 文件。 然后登录新的从节点,执行以下命令: $ cd Hadoop_path $ bin/hadoop-daemon.sh start datanode $ bin/hadoop-daemon.sh start tasktracker 然后就可…- 0
- 0
- 37
-
-
HIVE- 新建UDF范例
首先pom文件导入依赖,Hadoop和hive的依赖导入自己机器的版本,hive记得导jdbc <dependency> <groupId>org.apache.hadoop</groupId> <artifactId>hadoop-client</artifactId> <version>2.6.1</v…- 0
- 0
- 48
-
Openldap- 大集群身份验证服务
无论在哪个行业,数据安全永远都是摆在首要地位。尤其是在大数据行业上,谁掌握了数据,谁就有可能成为下个亿万富豪的环境中,数据安全更为重要。大数据的安全可以从哪些地方入手,首先可以在身份验证上面入手。在大数据的集群设备上做好身份验证,可以使用openldap来做。 唯有通过openldap管理的账号才能对大数据系统进行访问,没有通过openldap创建的账号是不能login到Hadoop…- 0
- 0
- 60
-
Linux- AWS之EC2大数据集群定时开关机
众所周知,云计算就是在计算你的钱,每当ec2开起来就要开始计费。当用户购买了一个庞大的与服务器做一个集群,尤其是用来做大数据集群,这些服务器的配置相当高,每台服务器所需要的费用不菲。其实在很多时候没能够完全利用起其全部的资源,尤其在空闲时间,在夜间没有作业的情况下,这些服务器完全处于空闲的状态,却时刻在计费,这是相当不划算的。于是有这样一个方案,我们是不是可以在机器处于空闲的状态时将…- 0
- 0
- 99
-
HIVE- 大数据运维之hive管理
我现在在一家公司负责大数据平台(CDH平台)的运维管理,最常遇见的问题我总结出来,并且继续在下面更新。希望方便自己以后trouble shooting以及方便各位同行解决问题与学习。 关于做运维有几个重要的要点一定一定要遵守的: 遇到问题冷静,冷静,冷静,就山崩都要冷静,心态关乎你是否能将问题解决同时不会给人留下不好的印象。 凡是关于对集群更改与变动的操作,一定要在测试环境测试到没问…- 0
- 0
- 75
-
Kafka- Spark消费Kafka
在高版本的API中 val brokers = properties.getProperty("kafka.host.list") val topics = Set(properties.getProperty("kafka.application.topic")) val kafkaParams = Map[String, String]( …- 0
- 0
- 41
-
激活idea2018
首先下载安装完成后,打开hosts文件,新增一条路由: 0.0.0.0 account.jetbrains.com 打开软件输入序列码: EB101IWSWD-eyJsaWNlbnNlSWQiOiJFQjEwMUlXU1dEIiwibGljZW5zZWVOYW1lIjoibGFuIHl1IiwiYXNzaWduZWVOYW1lIjoiIiwiYXNzaWduZWVFbWFpbCI6I…- 0
- 0
- 79
-
CDH- 集群时间同步ntp问题解决
在CDH集群中发现有两台机器获取不到心跳(),导致监控不了机器状态,出现告警 可以使用ntpstat检查与ntp 服务器的时间偏差状态 使用 ntpstat 发现没有同步到ntp时间服务器,运行 ntpdate ip 添加时间同步服务器出现报错 the NTP socket is in use, exiting 网上搜了一下,大部分的建议是…- 0
- 0
- 50
-
Python- 贪婪与非贪婪
python运行匹配时,如果没有人为限定,默认是贪婪模式。 import re a = 'python 22222java34bigdata' r = re.findall('[a-z]{3}',a) # 打印三个字符 rr = re.findall('[a-z]{3,6}',a) # 匹配到的长度最小为3,最长不能超过 r…- 0
- 0
- 57
-
CDH- CDH大数据集群运维
CDH前端CM监控不正常(未解决) Request to the Service Monitor failed. This may cause slow page responses. View the status of the Service Monitor. Request to the Host Monitor failed. This may cause sl…- 0
- 0
- 199
-
-
Storm- 使用Storm实现累积求和的操作
需求:1+2+3+... = ??? 实现方案: Spout发出数字作为input 使用Bolt来处理业务逻辑:求和 将结果输出到控制台 拓扑设计:DataSourceSpout -->SumBolt→输出 package com.imooc.bigdata; import org.apache.storm.Config; import org.apache.st…- 0
- 0
- 61
-
Storm- 使用Storm实现词频汇总
需求:读取指定目录的数据,并实现单词计数的功能 实现方案: Spout来读取指定目录的数据,作为后续Bolt处理的input 使用一个Bolt把input 的数据,切割分开,我们按照逗号进分割 使用一个Bolt来进行最终的单词次数统计操作并输出 拓扑设计:DataSourceSpout ==>SpiltBolt ==>CountBolt Storm编程注意,…- 0
- 0
- 59
-
Spark-Spark setMaster & WordCount Demo
Spark setMaster源码 /** * The master URL to connect to, such as "local" to run locally with one thread, "local[4]" to * run locally with 4 cores, or "spark://master:7077&…- 0
- 0
- 76
-
Spark- Transformation实战
RDD的算子分为两类,是 Trans formation(Lazy),一类是 Action(触发任务执行 RDD不存在真正要计算的数据,而是记录了RDD的转换关系(调用了什么方法,传入什么函数) RDD的 Trans formation的特点 1. lazy 2.生成新的RDD package cn.rzlee.spark.core import org.…- 0
- 0
- 55
-
Spark- Action实战
Spark- Action实战 package cn.rzlee.spark.core import org.apache.spark.rdd.RDD import org.apache.spark.{SparkConf, SparkContext} object ActionOperation { def main(args: Array[String]): Unit…- 0
- 0
- 47
-
Spark- RDD持久化
官方原文: RDD Persistence One of the most important capabilities in Spark is persisting (or caching) a dataset in memory across operations. When you persist an RDD, each node stores any partitions …- 0
- 0
- 56
-
Spark- 共享变量
Shared Variables Normally, when a function passed to a Spark operation (such as map or reduce) is executed on a remote cluster node, it works on separate copies of all the variables used in the…- 0
- 0
- 63
-
Hbase- Hbase客户端读写数据时的路由流程
1、客户端先到zookeeper查找hbase:meta所在的RegionServer服务器 2、去hbase:meta表查找自己所要的数据所在的region server 3、去目标region server上的region要自己的数据 可以看出客户端查找数据可以不经过master- 0
- 0
- 39
-
Hadoop- Namenode经常挂掉 IPC’s epoch 9 is less than the last promised epoch 10
如题出现Namenode经常挂掉 IPC's epoch 9 is less than the last promised epoch 10, 2019-01-03 05:36:14,774 INFO org.apache.hadoop.hdfs.StateChange: BLOCK* allocate blk_1073741949_1131{UCState=…- 0
- 0
- 131
-
Springboot- pagehelper使用
1.添加pagehelper依赖 <dependency> <groupId>org.github.pagehelper</groupId> <artifactId>pagehelper-spring-boot-starter</artifactId> <version>1.3.2</version>…- 0
- 0
- 49