-
Python- 贪婪与非贪婪
python运行匹配时,如果没有人为限定,默认是贪婪模式。 import re a = 'python 22222java34bigdata' r = re.findall('[a-z]{3}',a) # 打印三个字符 rr = re.findall('[a-z]{3,6}',a) # 匹配到的长度最小为3,最长不能超过 r…- 0
- 0
- 107
-
Sqooop- 使用Sqoop进行数据的导入导出
Sqoop是Apache旗下的一个开源框架,专门用来做数据的导入和导出。 官网:https://sqoop.apache.org/ Sqoop的安装非常简单,只需要把下载下来的tar包解压设置两个环境变量就可以了 1.安装部署 下载版本:sqoop-1.4.6.bin__hadoop-2.0.4-alpha.tar.gz 官网:http://mirror.bit.edu.cn/apa…- 0
- 0
- 149
-
Hbase- Hbase客户端读写数据时的路由流程
1、客户端先到zookeeper查找hbase:meta所在的RegionServer服务器 2、去hbase:meta表查找自己所要的数据所在的region server 3、去目标region server上的region要自己的数据 可以看出客户端查找数据可以不经过master- 0
- 0
- 56
-
Hadoop- MapReduce在实际应用中常见的调优
1、Reduce Task Number 通常来说一个block就对应一个map任务进行处理,reduce任务如果人工不去设置干预的话就一个reduce。reduce任务的个数可以通过在程序中设置 job.setNumReduceTasks(个数); ,也可在配置文件上设置reduce任务个数,默认为1, 或者在代码config中配置 Configuration configura…- 0
- 0
- 79
-
spark- PySparkSQL之PySpark解析Json集合数据
PySparkSQL之PySpark解析Json集合数据 数据样本 12341234123412342|asefr-3423|[{"name":"spark","score":"65"},{"name":"airlow","score":&quo…- 0
- 0
- 76
-
Python- and & or 的短路原则
条件1 and 条件2 条件1 or 条件2 短路原则 对于and 如果前面的第一个条件为假,那么这个and前后两个条件组成的表达式的计算结果就一定为假,第二个条件就不会被计算 对于or 如果前面的第一个条件为真,那么这个or前后两个条件组成的表达式的计算结果就一定为真,第二个条件就不会被计算- 0
- 0
- 90
-
Spark-Spark setMaster & WordCount Demo
Spark setMaster源码 /** * The master URL to connect to, such as "local" to run locally with one thread, "local[4]" to * run locally with 4 cores, or "spark://master:7077&…- 0
- 0
- 121
-
-
Hadoop- 集群时间同步
集群的时间要同步 * 找一台机器 时间服务器 * 所有的机器与这台机器时间进行定时的同步 比如,每日十分钟,同步一次时间 # rpm -qa|grep ntp # vi /etc/ntp.conf # vi /etc/sysconfig/ntpd # Drop root to id 'ntp:ntp' by default. SYNC_HWCLOCK=yes OP…- 0
- 0
- 62
-
HIVE- 数据倾斜
数据倾斜就是由于数据分布不均匀,数据大量集中到一点上,造成数据热点。大多数情况下,分为一下三种情况: 1.map端执行比较快,reduce执行很慢,因为partition造成的数据倾斜。 2.某些reduce很快,某些reduce很慢,也是因为partition造成的数据倾斜。 3.某些map执行很快,某些map执行很慢,这是因为数据本身的分布的不合理性造成的。 造成上面reduce…- 0
- 0
- 58
-
Spark- ERROR Shell: Failed to locate the winutils binary in the hadoop binary path java.io.IOException: Could not locate executable null\bin\winutils.exe in the Hadoop binaries.
运行 mport org.apache.log4j.{Level, Logger} import org.apache.spark.rdd.RDD import org.apache.spark.{SparkConf, SparkContext} /** * Created by Lee_Rz on 2017/8/30. */ object SparkDemo { def main(args: A…- 0
- 0
- 138
-
Hadoop- Wordcount程序原理及代码实现
如果对Hadoop- MapReduce分布式计算框架原理还不熟悉的可以先了解一下它,因为本文的wordcount程序实现就是MapReduce分而治之最经典的一个范例。 单词计数(wordcount)主要步骤: 1.读数据 2.按行处理 3.按空格切分行内单词 4.HashMap(单词,value+1) 等分给自己的数据片全部读取完之后 5.将HashMap按照首字母范围分为3个H…- 0
- 0
- 89
-
Spark- 常见问题
记录spark使用中常见问题 SparkSQL 日期解析时用到SimpleDateFormat, SimpleDateFormat是线程不安全的。可以使用 FastDateFormat 如: import org.apache.commons.lang3.time.FastDateFormat // 输入文件日期时间格式 // [10/Nov/2018:00:01:02 +0800]…- 0
- 0
- 82
-
Hadoop- 流量汇总程序之如何实现hadoop的序列化接口及代码实现
流量汇总程序需求 统计每一个用户(手机号)锁耗费的总上行流量、下行流量、总流量。 流程剖析 阶段:map 读取一行数据,切分字段, 抽取手机号,上行流量,下行流量 context.write(手机号,bean) 阶段:reduce 汇总遍历每个bean,将其中的上行流量,下行流量分别累加,得到一个新的bean context.write(手机号,新bean); 代码实现…- 0
- 0
- 82
-
Hive- Hive 按时间定期插入分区表
写个shell脚本Hive 按时间定期插入分区表,由于今天统计的是昨天的数据所以日期减一。 #!/bin/bash DT=`date -d '-1 day' "+%Y-%m-%d"` #如果某天的数据有误需要重跑 if [ $1 ];then DT=$1 fi SQL=" insert overwrite table t…- 0
- 0
- 58
-
Kafka- Spark消费Kafka
在高版本的API中 val brokers = properties.getProperty("kafka.host.list") val topics = Set(properties.getProperty("kafka.application.topic")) val kafkaParams = Map[String, String]( …- 0
- 0
- 72
-
Spark- RDD简介
Spark里面提供了一个比较重要的抽象——弹性分布式数据集(resilient distributed dataset),简称RDD。弹性:数据可大可小,可分布在内存或磁盘,当某台机器宕机时,能够按照RDD的liveage重新计算,从而恢复。 RDD有5个特性: 1.一个分区列表,用于并行计算,每个分区对应一个原子数据集,作为这个分区的数据输入 2.计算这个RDD某个分区数据(这个分…- 0
- 0
- 73
-
Hadoop- Namenode经常挂掉 IPC’s epoch 9 is less than the last promised epoch 10
如题出现Namenode经常挂掉 IPC's epoch 9 is less than the last promised epoch 10, 2019-01-03 05:36:14,774 INFO org.apache.hadoop.hdfs.StateChange: BLOCK* allocate blk_1073741949_1131{UCState=…- 0
- 0
- 184
-
CDH- 集群时间同步ntp问题解决
在CDH集群中发现有两台机器获取不到心跳(),导致监控不了机器状态,出现告警 可以使用ntpstat检查与ntp 服务器的时间偏差状态 使用 ntpstat 发现没有同步到ntp时间服务器,运行 ntpdate ip 添加时间同步服务器出现报错 the NTP socket is in use, exiting 网上搜了一下,大部分的建议是…- 0
- 0
- 67
-
Kafka- Kafka架构功能
Kafka是一个高吞吐量的分布式消息系统,一个分布式的发布-订阅消息系统。Kafka是一种快速,可拓展的,设计内在就是分布式的,分区的可复制的提交日志服务。 Apache Kafka与传统消息系统相比,有以下不同: 它设计为一个分布式系统,易于向外拓展; 它同时为发布和订阅提供高吞吐量; 它支持多订阅者,当失败时能自动平衡消费者; 它将消息持久化到磁盘,因此可用于批量消费,例如ETL…- 0
- 0
- 50
-
SpringBoot- springboot集成Redis出现报错:No qualifying bean of type ‘org.springframework.data.redis.connection.RedisConnectionFactory’
Springboot将accessToke写入Redisk 缓存,springboot集成Redis出现报错 No qualifying bean of type 'org.springframework.data.redis.connection.RedisConnectionFactory' 原因:我们在pom.xml中引入了spring-boo…- 0
- 0
- 395
-
Hive- 大数据仓库Hive
什么是 Hive? Hive 是由 FaceBook 开源用于解决少量数据结构化日志的数据统计。Hive是基于 Hadoop 的一个数据仓库工具,可以将结构化的数据文件映射成一张表,并提供类SQL查询功能。Hive 处理的数据存储在 HDFS 上,分析数据的底层实现是 MapReduce ,执行程序运行的是YARN。 构建在Hadoop之上的数据仓库: 使用 HQL 作为查询接口 使…- 0
- 0
- 59
-
Spark- Action实战
Spark- Action实战 package cn.rzlee.spark.core import org.apache.spark.rdd.RDD import org.apache.spark.{SparkConf, SparkContext} object ActionOperation { def main(args: Array[String]): Unit…- 0
- 0
- 69
-
Spark- 共享变量
Shared Variables Normally, when a function passed to a Spark operation (such as map or reduce) is executed on a remote cluster node, it works on separate copies of all the variables used in the…- 0
- 0
- 90
-
Hadoop- MR的shuffle过程
step1 input InputFormat读取数据,将数据转换成<key ,value>对,设置FileInputFormat,默认是文本格式(TextInputFormat) step2 map map<KEYIN, VALUEIN, KEYOUT, VALUEOUT> 默认情况下KEYIN:LongWritable,偏移量。VALUEIN:Text,K…- 0
- 0
- 49
-
Spark- SparkStreaming可更新状态的实例
Producer package zx.zx.sparkkafka import java.util.Properties import kafka.producer.{KeyedMessage, Producer, ProducerConfig} import scala.util.Random /** * Created by 166 on 2017/9/6. */ object…- 0
- 0
- 100
-
Spark- SparkSQL中 Row.getLong 出现NullPointerException错误的处理方法
在SparkSQL中获取Row的值,而且Row的字段允许null时,在取值的时候取到null赋值给新的变量名会报NullPointerException错误, 可以先用row.isNullAt(index)去判断该字段的值是否为空 首先上错误 修改为先初始化变量,判断row.isNullAt(6) 如果不为空就将值赋值给变量- 0
- 0
- 109
-
大数据之路- Hadoop环境搭建(Linux)
前期部署 1.JDK 2.上传HADOOP安装包 2.1官网:http://hadoop.apache.org/ 2.2下载hadoop-2.6.1的这个tar.gz文件,官网: https://archive.apache.org/dist/hadoop/common/hadoop-2.6.1/ 下载成功后,把这个tar.gz包上传到服务器上,命令: 通…- 0
- 0
- 72
-
CDH- CDH大数据集群运维
CDH前端CM监控不正常(未解决) Request to the Service Monitor failed. This may cause slow page responses. View the status of the Service Monitor. Request to the Host Monitor failed. This may cause sl…- 0
- 0
- 229
-
Spark- Checkpoint原理剖析
Checkpoint,是Spark 提供的一个比较高级的功能。有的时候,比如说,我们的 Spark 应用程序,特别的复杂,然后从初始的RDD开始,到最后拯个应用程序完成,有非常多的步骤,比如超过20个transformation 操作。而且整个应用运行的时间也特别的长,比如通常要运行1-5小时。 在上述的情况下,就比较适合使用checkpoint 功能。因为,对于特别复杂的 Spar…- 0
- 0
- 84
-
Zeppelin- Linux下安装Zeppelin
前期部署: 下载,解压,配置PATH环境(编辑/etc/profile文件,记得source一下该文件) zepplin配置参考文档:https://zeppelin.apache.org/docs/0.7.2/install/configuration.html 往conf/zeppelin-env.sh文件中添加端口号 往底部添加 export ZEPPLELIN_PORT=8090 修改配置…- 0
- 0
- 97
-
激活idea2018
首先下载安装完成后,打开hosts文件,新增一条路由: 0.0.0.0 account.jetbrains.com 打开软件输入序列码: EB101IWSWD-eyJsaWNlbnNlSWQiOiJFQjEwMUlXU1dEIiwibGljZW5zZWVOYW1lIjoibGFuIHl1IiwiYXNzaWduZWVOYW1lIjoiIiwiYXNzaWduZWVFbWFpbCI6I…- 0
- 0
- 103
-
Spark- Spark Yarn模式下跑yarn-client无法初始化SparkConext,Over usage of virtual memory
在spark yarn模式下跑yarn-client时出现无法初始化SparkContext错误. 17/09/27 16:17:54 INFO mapreduce.Job: Task Id : attempt_1428293579539_0001_m_000003_0, Status : FAILED Container [pid=7847,containerID=containe…- 0
- 0
- 78
-
Linux- AWS之EC2大数据集群定时开关机
众所周知,云计算就是在计算你的钱,每当ec2开起来就要开始计费。当用户购买了一个庞大的与服务器做一个集群,尤其是用来做大数据集群,这些服务器的配置相当高,每台服务器所需要的费用不菲。其实在很多时候没能够完全利用起其全部的资源,尤其在空闲时间,在夜间没有作业的情况下,这些服务器完全处于空闲的状态,却时刻在计费,这是相当不划算的。于是有这样一个方案,我们是不是可以在机器处于空闲的状态时将…- 0
- 0
- 123
-
Hadoop- NameNode和Secondary NameNode元数据管理机制
元数据的存储机制A、内存中有一份完整的元数据(内存meta data)B、磁盘有一个“准完整”的元数据镜像(fsimage)文件(在namenode的工作目录中)C、用于衔接内存metadata和持久化元数据镜像fsimage之间的操作日志(edits文件)NameNode和Secondary NameNode元数据管理机制客户端每次对文件的操作,如果涉及到元数据的更新(读除外),比如…- 0
- 0
- 56









































